• Photonics Research
  • Vol. 6, Issue 10, 954 (2018)
Licheng Ge1, Yuping Chen1、*, Haowei Jiang1, Guangzhen Li1, Bing Zhu1, Yi’an Liu1, and Xianfeng Chen1、2
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2e-mail: xfchen@sjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000954 Cite this Article Set citation alerts
    Licheng Ge, Yuping Chen, Haowei Jiang, Guangzhen Li, Bing Zhu, Yi’an Liu, Xianfeng Chen. Broadband quasi-phase matching in a MgO:PPLN thin film[J]. Photonics Research, 2018, 6(10): 954 Copy Citation Text show less
    References

    [1] G. J. Milburn. Quantum optical Fredkin gate. Phys. Rev. Lett., 62, 2124-2127(1989).

    [2] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [3] L.-M. Duan, H. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett., 92, 127902(2004).

    [4] L. Lugiato, A. Gatti, E. Brambilla. Quantum imaging. J. Opt. B, 4, S176-S183(2002).

    [5] S. Brustlein, E. Lantz, F. Devaux. Absolute radiance imaging using parametric image amplification. Opt. Lett., 32, 1278-1280(2007).

    [6] J. S. Dam, C. Pedersen, P. Tidemand-Lichtenberg. High-resolution two-dimensional image upconversion of incoherent light. Opt. Lett., 35, 3796-3798(2010).

    [7] M. J. Nee, R. McCanne, K. J. Kubarych, M. Joffre. Two-dimensional infrared spectroscopy detected by chirped pulse upconversion. Opt. Lett., 32, 713-715(2007).

    [8] K. Huang, X. Gu, H. Pan, E. Wu, H. Zeng. Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion. Appl. Phys. Lett., 100, 151102(2012).

    [9] J. Falk, Y. See. Internal cw parametric upconversion. Appl. Phys. Lett., 32, 100-101(1978).

    [10] B. Dayan, A. Pe’er, A. A. Friesem, Y. Silberberg. Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Phys. Rev. Lett., 94, 043602(2005).

    [11] O. Kuzucu, F. N. Wong, S. Kurimura, S. Tovstonog. Time-resolved single-photon detection by femtosecond upconversion. Opt. Lett., 33, 2257-2259(2008).

    [12] M. Almendros, J. Huwer, N. Piro, F. Rohde, C. Schuck, M. Hennrich, F. Dubin, J. Eschner. Bandwidth-tunable single-photon source in an ion-trap quantum network. Phys. Rev. Lett., 103, 213601(2009).

    [13] P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, J. Schaake. Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission. Phys. Rev. Lett., 105, 253601(2010).

    [14] H. Leng, X. Yu, Y. Gong, P. Xu, Z. Xie, H. Jin, C. Zhang, S. Zhu. On-chip steering of entangled photons in nonlinear photonic crystals. Nat. Commun., 2, 429(2011).

    [15] H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, S. Zhu. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett., 113, 103601(2014).

    [16] G. Poberaj, H. Hu, W. Sohler, P. Guenter. Lithium niobate on insulator (LNOI) for micro photonic devices. Laser Photon. Rev., 6, 488-503(2012).

    [17] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 6, 488-503(2018).

    [18] H.-C. Huang, J. I. Dadap, G. Malladi, I. Kymissis, H. Bakhru, R. M. Osgood. Helium-ion-induced radiation damage in linbo3 thin-film electro-optic modulators. Opt. Express, 22, 19653-19661(2014).

    [19] L. Cai, Y. Kang, H. Hu. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film. Opt. Express, 24, 4640-4647(2016).

    [20] A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, S. Fathpour. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett., 41, 5700-5703(2016).

    [21] C. Wang, M. Zhang, B. Stern, M. Lipson, M. Lončar. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).

    [22] C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. Huang, P. Stark, M. Lončar. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 22, 30924-30933(2014).

    [23] J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, Y. Cheng. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep., 5, 8072(2015).

    [24] R. Luo, H. Jiang, H. Liang, Y. Chen, Q. Lin. Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt. Lett., 42, 1281-1284(2017).

    [25] J. Sun, C. Xu. 466 mW green light generation using annealed proton-exchanged periodically poled MgO:LiNbO3 ridge waveguides. Opt. Lett., 37, 2028-2030(2012).

    [26] M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron., 28, 2631-2654(1992).

    [27] J. Armstrong, N. Bloembergen, J. Ducuing, P. Pershan. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 127, 1918-1939(1962).

    [28] H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, L. H. Peng. Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics. Science, 331, 1165-1168(2011).

    [29] Y.-Q. Qin, C. Zhang, Y.-Y. Zhu, X.-P. Hu, G. Zhao. Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures. Phys. Rev. Lett., 100, 063902(2008).

    [30] M. Gong, Y. Chen, F. Lu, X. Chen. All optical wavelength broadcast based on simultaneous type I QPM broadband SFG and SHG in MGO:PPLN. Opt. Lett., 35, 2672-2674(2010).

    [31] J. Zhang, Y. Chen, F. Lu, X. Chen. Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MGO-doped PPLN. Opt. Express, 16, 6957-6962(2008).

    [32] R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E. B. Kley, A. Tünnermann, T. Pertsch. Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation. Opt. Lett., 40, 2715-2718(2015).

    [33] T. Dougherty, E. J. Heilweil. Dual-beam subpicosecond broadband infrared spectrometer. Opt. Lett., 19, 129-131(1994).

    [34] E. J. Heilweil. Ultrashort-pulse multichannel infrared spectroscopy using broadband frequency conversion in LiIO3. Opt. Lett., 14, 551-553(1989).

    [35] A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho-González, S. Fathpour. Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation. Appl. Phys. Lett., 110, 111109(2017).

    [36] C. Rulliere. Femtosecond Laser Pulses(1998).

    [37] N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, T. Taira. Broadband quasi-phase-matched second-harmonic generation in MGO-doped periodically poled LiNbO3 at the communications band. Opt. Lett., 27, 1046-1048(2002).

    [38] O. Gayer, Z. Sacks, E. Galun, A. Arie. Temperature and wavelength dependent refractive index equations for MGO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B, 91, 343-348(2008).

    [39] A. W. Snyder, J. Love. Optical Waveguide Theory(2012).

    [40] C. Zhu, Y. Chen, G. Li, L. Ge, B. Zhu, M. Hu, X. Chen. Multiple-mode phase matching in a single-crystal lithium niobate waveguide for three-wave mixing. Chin. Opt. Lett., 15, 091901(2017).

    [41] L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, J. E. Bowers. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531-535(2016).

    [42] R. V. Gainutdinov, T. R. Volk, H. H. Zhang. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3films on SiO2/LiNbO3 substrates. Appl. Phys. Lett., 107, 162903(2015).

    [43] P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Müller, A. Zrenner. Periodic domain inversion in x-cut single-crystal lithium niobate thin film. Appl. Phys. Lett., 108, 152902(2016).

    [44] S. Kim, V. Gopalan. Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate. Mater. Sci. Eng. B, 120, 91-94(2005).

    [45] I. Mhaouech, V. Coda, G. Montemezzani, M. Chauvet, L. Guilbert. Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide. Opt. Lett., 41, 4174-4177(2016).

    [46] W. Jin, K. S. Chiang. Mode switch based on electro-optic long-period waveguide grating in lithium niobate. Opt. Lett., 40, 237-240(2015).

    [47] R. W. Boyd. Nonlinear optics. Handbook of Laser Technology and Applications (Three-Volume Set), 161-183(2003).

    CLP Journals

    [1] Xiao-Hui Tian, Wei Zhou, Kun-Qian Ren, Chi Zhang, Xiaoyue Liu, Guang-Tai Xue, Jia-Chen Duan, Xinlun Cai, Xiaopeng Hu, Yan-Xiao Gong, Zhenda Xie, Shi-Ning Zhu. Effect of dimension variation for second-harmonic generation in lithium niobate on insulator waveguide [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060015

    [2] Chenghao Lu, Bing Zhu, Chuanyi Zhu, Licheng Ge, Yian Liu, Yuping Chen, Xianfeng Chen. All-optical logic gates and a half-adder based on lithium niobate photonic crystal micro-cavities[J]. Chinese Optics Letters, 2019, 17(7): 072301

    Licheng Ge, Yuping Chen, Haowei Jiang, Guangzhen Li, Bing Zhu, Yi’an Liu, Xianfeng Chen. Broadband quasi-phase matching in a MgO:PPLN thin film[J]. Photonics Research, 2018, 6(10): 954
    Download Citation