• Acta Photonica Sinica
  • Vol. 50, Issue 4, 111 (2021)
Zhuo CHEN1, Tiancheng LI2, Degui SUN1、*, Na SUN1, Hongpeng SHANG1, and Chen CHEN1
Author Affiliations
  • 1School of Science, Changchun University of Science and Technology, Changchun30022, China
  • 2Changchun Changguang Yuanchen Microelectronics Technology Co. Ltd, Changchun1300, China
  • show less
    DOI: 10.3788/gzxb20215004.0423001 Cite this Article
    Zhuo CHEN, Tiancheng LI, Degui SUN, Na SUN, Hongpeng SHANG, Chen CHEN. Digital Thermo-optic Switch of SOI Waveguide Based on Goos-Hänchen Spatial Shift of Reflected Mode[J]. Acta Photonica Sinica, 2021, 50(4): 111 Copy Citation Text show less
    References

    [1] J S ORCUTT, B MOSS, C SUN et al. Open foundry platform for high-performance electronic-photonic integration. Optics Express, 20, 12222-12232(2012).

    [2] M P EARNSHAW, M CAPPUZZO et al. 8 × 8 optical switch matrix using generalized Mach-Zehnder interferometers. IEEE Photonics Technology Letters, 15, 810-812(2003).

    [3] Y ZHA, D G SUN, T G LIU et al. Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extended banyan network. IEEE Photonics Technology Letters, 19, 390-392(2007).

    [4] J V CAMPENHOUT, W M J GREEN, Y A VLASOV. Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip. Optics Express, 17, 23793(2009).

    [5] D G SUN, Z HU, S ABDUL-MAJID et al. Limitation factor analysis for silicon-on-insulator waveguide Mach–Zehnder interference-based electro-optic switch. Journal of Lightwave Technology, 29, 2592-600(2011).

    [6] M R WATTS, J SUN, C DEROSE et al. Adiabatic thermo-optic Mach-Zehnder switch. Optics Letters, 38, 733-735(2013).

    [7] Y ZHAO, H JIA, Y XIA et al. AS4A, 5(2015).

    [8] Y SHOJI, K KINTAKA, S SUDA et al. Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides. Optics Express, 18, 9071-9075(2010).

    [9] A RYAN, F ALEX, D CHRISTOPHER et al. Wideband silicon-photonic thermo-optic switch in a wavelength-division multiplexed ring network. Optics Express, 22, 8205-8218(2014).

    [10] J XING, Z LI, P ZHOU et al. Nonblocking 4×4 silicon electro-optic switch matrix with push-pull drive. Optics Letters, 38, 3926-3929(2013).

    [11] S KEIJIRO, T MUNEHIRO et al. Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Optics Express, 23, 17599-17606(2015).

    [12] L LU, S ZHAO, L ZHOU et al. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 24, 9295-307(2016).

    [13] D NIKOLOVA, D M CALHOUN, Y LIU et al. Modular architecture for fully non-blocking silicon photonic switch fabric. Microsystems & Nanoengineering, 3, 16071(2017).

    [14] R KRAHENBUHL, M M HOWERTON, J DUBINGER et al. Performance and modeling of advanced Ti: LiNbO3 digital optical switches. Journal of Lightwave Technology, 20, 92-99(2002).

    [15] W YUAN, S KIM, W H STEIER et al. Electrooptic polymeric digital optical switches (DOSs) with adiabatic couplers. IEEE Photonics Technology Letters, 17, 2568-2570(2005).

    [16] K SOLEHMAINEN, M KAPULAINEN, M HARJANNE et al. Adiabatic and multimode interference couplers on silicon-on-insulator. IEEE Photonics Technology Letters, 18, 2287-2289(2006).

    [17] D G SUN, Z LIU, Y ZHA et al. Thermo-optic waveguide digital optical switch using symmetrically coupled gratings. Optics Express, 13, 5463-5471(2005).

    [18] T J SEOK, N QUACK, S HAN et al. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3, 64(2016).

    [19] D G SUN. A proposal for digital electro-optic switches with free-carrier dispersion effect and Goos-Hanchen shift in silicon-on-insulator waveguide corner mirror. Journal of Applied Physics, 114, 4502(2013).

    [20] D G SUN. Manipulation of the coherent spatial and angular shifts of Goos-Hnchen effect to realize the digital optical switch in silicon-on-insulator waveguide corner. Journal of Applied Physics, 120, 333-703(2016).

    [21] A JOUSHAGHANI, B A KRUGER, S PARADIS et al. Sub-volt broadband hybrid plasmonic-vanadium dioxide switches. Applied Physics Letters, 102, 061101(2013).

    [22] C C CHAN, T TAMIR. Angular shift of a Gaussian beam reflected near the Brewster angle. Optics Letters, 10, 378-380(1985).

    [23] R SIMON, T TAMIR. Nonspecular phenomena in partly coherent beams reflected by multilayered structures. Journal of the Optical Society of America A, 3, 558-565(1986).

    [24] L B MüLLER, D THARANGA, A STAHLHOFEN et al. Nonspecular shifts of microwaves in partial reflection. Europhysics Letters, 73, 526-532(2006).

    [25] A AIELLO, M MERANO, J P WOERDMAN. Duality between spatial and angular shift in optical reflection. Physical Review A, 80, 061801(2009).

    [26] T CHU, H YAMADA, S ISHIDA et al. Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides. Optics Express, 13, 10109-10114(2005).

    [27] A DENSMORE, S JANZ, R MA et al. Compact and low power thermo-optic switch using folded silicon waveguides. Optics Express, 17, 10457-10465(2009).

    [28] P SUN, R M REANO. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Optics Express, 18, 8406-8411(2010).

    [29] H AHARONI, M D PLESSIS. The spatial distribution of light from silicon LEDs. Sensors and Actuators A: Physical, 57, 233-237(1996).

    [30] K XU. Integrated silicon directly modulated light source using p-well in standard CMOS technology. IEEE Sensors Journal, 16, 6184-6191(2016).

    [31] X KAIKAI. Silicon MOS optoelectronic micro‐nano structure based on reverse‐biased PN junction. Physica Status Solidi A, 216, 1800868(2019).

    Zhuo CHEN, Tiancheng LI, Degui SUN, Na SUN, Hongpeng SHANG, Chen CHEN. Digital Thermo-optic Switch of SOI Waveguide Based on Goos-Hänchen Spatial Shift of Reflected Mode[J]. Acta Photonica Sinica, 2021, 50(4): 111
    Download Citation