• Acta Physica Sinica
  • Vol. 69, Issue 17, 178701-1 (2020)
Kuan-Ming Yao1, Jing-Yi Yao1, Zhao Hai1, Deng-Feng Li1, Zhao-Qian Xie2、*, and Xin-Ge Yu1、*
Author Affiliations
  • 1Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
  • 2State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China
  • show less
    DOI: 10.7498/aps.69.20200664 Cite this Article
    Kuan-Ming Yao, Jing-Yi Yao, Zhao Hai, Deng-Feng Li, Zhao-Qian Xie, Xin-Ge Yu. Stretchable self-powered epidermal electronics from piezoelectric rubber for tactile sensing[J]. Acta Physica Sinica, 2020, 69(17): 178701-1 Copy Citation Text show less
    The flexible piezoelectric epidermal electronic device: (a) Explosive view of the structure of the device; (b) overall and detailed photos of the serpentine structured interdigital electrodes and the design; (c) photograph showing the device attached to the skin; (d) photographs showing the device under longitudinal and latitudinal stretching, twisting and bending, respectively; (e) the SEM image of the surface morphology of the graphene/PZT/PDMS ternary piezoelectric rubber; (f) energy dispersive X-ray spectroscopy (EDX) images illustrating the distribution of C, Si, O, Pb, Zr and Ti.
    Fig. 1. The flexible piezoelectric epidermal electronic device: (a) Explosive view of the structure of the device; (b) overall and detailed photos of the serpentine structured interdigital electrodes and the design; (c) photograph showing the device attached to the skin; (d) photographs showing the device under longitudinal and latitudinal stretching, twisting and bending, respectively; (e) the SEM image of the surface morphology of the graphene/PZT/PDMS ternary piezoelectric rubber; (f) energy dispersive X-ray spectroscopy (EDX) images illustrating the distribution of C, Si, O, Pb, Zr and Ti.
    Electrical performance of the piezoelectric device with varying applied pressure under a hitting frequency of 1 Hz: (a) Real-time measured open-circuit voltage output under varying applied pressure; (b) average peak open-circuit voltage as a function of pressure (inset: OC voltage output at about 1 kPa pressure and below); (c) real-time measured short-circuit current output under varying applied pressure; (d) average peak short-circuit current as a function of pressure (inset: SC current output at about 1 kPa pressure and below).
    Fig. 2. Electrical performance of the piezoelectric device with varying applied pressure under a hitting frequency of 1 Hz: (a) Real-time measured open-circuit voltage output under varying applied pressure; (b) average peak open-circuit voltage as a function of pressure (inset: OC voltage output at about 1 kPa pressure and below); (c) real-time measured short-circuit current output under varying applied pressure; (d) average peak short-circuit current as a function of pressure (inset: SC current output at about 1 kPa pressure and below).
    Electrical performance of the piezoelectric device with identical applied pressure ((23.17 ± 1.76) kPa) under varying longitu-dinal and latitudinal stretching strain: (a) Real-time measured open-circuit voltage output under varying longitudinal stretching strain; (b) average peak open-circuit voltage as a function of longitudinal strain; (c) real-time measured open-circuit voltage output under varying latitudinal strain; (d) average peak open-circuit voltage as a function of latitudinal strain.
    Fig. 3. Electrical performance of the piezoelectric device with identical applied pressure ((23.17 ± 1.76) kPa) under varying longitu-dinal and latitudinal stretching strain: (a) Real-time measured open-circuit voltage output under varying longitudinal stretching strain; (b) average peak open-circuit voltage as a function of longitudinal strain; (c) real-time measured open-circuit voltage output under varying latitudinal strain; (d) average peak open-circuit voltage as a function of latitudinal strain.
    Electrical performance of the piezoelectric device when attached to human skin: (a) Photos of four different contact method: touching, poking, tapping and hitting; (b) real-time measured open-circuit voltage outputs; (c) average peak open-circuit voltages; (d) real-time measured short-circuit current outputs; (e) average peak short-circuit currents; (f) comparison between open-circuit voltage outputs of devices in original state and after one-month use when used for tactile sensing; (g) comparison between short-circuit current outputs of devices in original state and after one-month use when used for tactile sensing.
    Fig. 4. Electrical performance of the piezoelectric device when attached to human skin: (a) Photos of four different contact method: touching, poking, tapping and hitting; (b) real-time measured open-circuit voltage outputs; (c) average peak open-circuit voltages; (d) real-time measured short-circuit current outputs; (e) average peak short-circuit currents; (f) comparison between open-circuit voltage outputs of devices in original state and after one-month use when used for tactile sensing; (g) comparison between short-circuit current outputs of devices in original state and after one-month use when used for tactile sensing.
    Demonstration test of supplying energy for 15 LED bulbs only by the piezoelectric device: (a), (b) LEDs are blacked out when fingers lift off from the device; (c), (d) 15 LEDs are all lighten up at the moment fingers hit the device.
    Fig. 5. Demonstration test of supplying energy for 15 LED bulbs only by the piezoelectric device: (a), (b) LEDs are blacked out when fingers lift off from the device; (c), (d) 15 LEDs are all lighten up at the moment fingers hit the device.
    Kuan-Ming Yao, Jing-Yi Yao, Zhao Hai, Deng-Feng Li, Zhao-Qian Xie, Xin-Ge Yu. Stretchable self-powered epidermal electronics from piezoelectric rubber for tactile sensing[J]. Acta Physica Sinica, 2020, 69(17): 178701-1
    Download Citation