• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 6, 1456 (2022)
LUAN Shiliang*, ZHANG Shuai, REN Ke, and WANG Yiguang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    LUAN Shiliang, ZHANG Shuai, REN Ke, WANG Yiguang. Fabrication and CaO-MgO-Al2O3-SiO2 Corrosion Resistance of Multi-Component BaO-SrO-CaO-MgO-Al2O3-2SiO2 Environmental Barrier Coatings[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1456 Copy Citation Text show less
    References

    [2] JACOBSON N S. Corrosion of silicon-based ceramics in combustion environments[J]. J Am Ceram Soc, 1993, 76(1): 3-28.

    [3] LIU J, ZHANG L T, WANG Y G, et al. Calcium-magnesium- aluminosilicate corrosion behaviors of rare-earth disilicates at 1 400 ℃[J]. J Eur Ceram Soc, 2013, 33(13): 3419-3428.

    [4] LIU J, ZHANG L T, WANG Y G, et al. Polymer-derived yttrium silicate coatings on 2D C/SiC composite[J]. J Eur Ceram Soc, 2013, 33(2): 433?439.

    [5] HONG Z L, CHENG L F, WANG Y G. An investigation of environment barrier Coating on 2D C/SiC composites prepared by liquid phase process[J]. J Inorg Organomet P, 2012, 22: 692-698.

    [6] FUKUDOME T, TSURUZONE S, TATSUMI, et al. Development and evaluation of ceramic components for a gas turbine[J]. Key Eng Mater, 2006, 317-318: 146-157.

    [7] LEE KN. Current status of environmental barrier coatings for Si-based ceramics[J]. Surf Coat Technol, 2000, 11: 133-134.

    [8] JACOBSON N S, FOX D S, SMIALEK J L, et al. Performance of ceramics in severe environments[J]. Corrosion Mater, 2005, 13B: 565-578.

    [9] BHATIA T, EATON H, SUN E, et al. Advanced environmental barrier coatings for SiC/SiC composites[M]. New York: ASM Engineers, 2005: 253-258.

    [10] PICQUOUT A, LAVIGNE F, MEI E T W, et al. Air traffic disturbance due to the 2010 Merapi volcano eruption[J]. J Volcanol Geoth Res, 2013, 261(3): 366-375.

    [11] BANSAL N P, CHOI S R. Properties of CMAS glass from desert sand[J]. Ceram Int, 2015, 41(3): 3901-3909.

    [12] CHEN X. Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coating[J]. Surf Coat Tech, 2006, 200(11): 3418-3427.

    [13] AHLBORG N L, ZHU D. Calcium-magnesium-aluminosilicate (CMAS) reaction and degradation mechanisms of advanced environmental barrier coating[J]. Surf Coat Tech, 2013, 237: 79-87.

    [14] WWLLMAN R, WHITMAN G, NICHOLLS JR. CMAS corrosion of EB PVD TBCs: Identifying the minimum level to initiate damage[J]. Int J Refract Met H, 2010, 28(1): 124-132.

    [15] DESCLOITRES J. Visible earth: a catalog of NASA images and animations of our home planet; 2005.

    [16] HARDER B J, RAMIREZRICO J, ALMER J D, et al. Chemical and mechanical consequences of environmental barrier coating exposure to calcium-magnesium-aluminosilicate[J]. J Am Ceram Soc, 2011, 94: 178-185.

    [19] KENDRA M G. CMAS degradation of environmental barrier coatings[J]. Surf Coat Tech, 2007, 202: 653-657.

    [20] GLUDOVATZ B, HOHENWARTER A,CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158.

    [21] LI Z M, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534(7606): 227-230.

    [22] WANG H X, CAO Y J, LIU W, et al. Oxidation behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-xSiC ceramics at high temperature[J]. Ceram Int, 2020, 46(8): 11160-11168.

    [23] TAN Y Q, CHEN C, Li S G, et al. Oxidation behaviours of high-entropy transition metal carbides in 1 200℃ water vapor[J]. J Alloy Compd, 2020, 816: 152523.

    [24] REN K,WANG Q K,SHAO G, et al. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating[J]. Scripta Mater, 2020, 178: 382-386.

    [25] DONG Y, REN K, LU Y H, et al. High-entropy environmental barrier coating for the ceramic matrix composites[J]. J Eur Ceram Soc, 2018, 39(7): 2574-2579.

    [26] TSAI K Y, TSAI M H, YEH J W. Sluggish diffusion in Co—Cr—Fe—Mn—Ni high-entropy alloys[J]. Acta Mater, 2013, 61(13): 4887-4897.

    [27] KUCZA W, DABROWA J, CIESLAK G, et al. Studies of “sluggish diffusion” effect in Co—Cr—Fe—Mn—Ni, Co—Cr—Fe—Ni, and Co—Fe—Mn—Ni, high entropy alloys; determination of tracer diffusivities by combinatorial approach[J]. J Alloy Compd, 2018, 731: 920-928.

    [28] KRAMER S, YANG J Y, JOHNSON C A, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits[J]. J Am Ceram Soc, 2006, 89: 3167.

    [29] JIANG F R, CHENG L F, WANG Y G, at al. Calcium-magnesium aluminosilicate corrosion of barium-strontium aluminosilicates with different strontium content[J]. Ceram Int, 2017, 43(1): 212-221.

    LUAN Shiliang, ZHANG Shuai, REN Ke, WANG Yiguang. Fabrication and CaO-MgO-Al2O3-SiO2 Corrosion Resistance of Multi-Component BaO-SrO-CaO-MgO-Al2O3-2SiO2 Environmental Barrier Coatings[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1456
    Download Citation