• Study On Optical Communications
  • Vol. 50, Issue 1, 23016201 (2024)
Mingzhu YIN, Wei WANG, Jingshun PAN, Fan LI*, and Zhaohui LI
Author Affiliations
  • a.School of Electronics and Information Technology; b. Guangdong Provincial Key Laboratory of Opto-Electronic Information Processing Chips and Systems, Sun Yat-Sen University, Guangzhou 510006, China
  • show less
    DOI: 10.13756/j.gtxyj.2024.230162 Cite this Article
    Mingzhu YIN, Wei WANG, Jingshun PAN, Fan LI, Zhaohui LI. Research Progress and Prospect of Key Technologies for Next-Generation Coherent PON[J]. Study On Optical Communications, 2024, 50(1): 23016201 Copy Citation Text show less
    References

    [1] Wey J S. The Outlook for PON Standardization: a Tutorial[J]. Journal of Lightwave Technology, 38, 31-42(2020).

    [2] Wey J S, Luo Y, Pfeiffer T. 5G Wireless Transport in a PON Context: an Overview[J]. IEEE Communications Standards Magazine, 4, 50-56(2020).

    [3] Zhang D, Liu D, Wu X et al. Progress of ITU-T Higher Speed Passive Optical Network (50 G PON) Standardization[J]. Journal of Optical Communications and Networking, 12, D99-D108(2020).

    [4] Liu X. Enabling Optical Network Technologies for 5G and Beyond[J]. Journal of Lightwave Technology, 40, 358-367(2022).

    [5] Liu X. Evolution of Fiber-optic Transmission and Networking Toward the 5G Era[J]. iScience, 22, 489-506(2019).

    [6] Wey J S, Zhang J. Passive Optical Networks for 5G Transport: Technology and Standards[J]. Journal of Lightwave Technology, 37, 2830-2837(2019).

    [9] Faruk M S, Li X, Nesset D et al. Coherent Passive Optical Networks: Why, When, and How[J]. IEEE Communications Magazine, 59, 112-117(2021).

    [10] Zhang J W, Jia Z S. Coherent Passive Optical Networks for 100 G/λ-and-beyond Fiber Access: Recent Progress and Outlook[J]. IEEE Network, 36, 116-123(2022).

    [11] Zhang J W, Wey J S, Shi J Y et al. Single-wavelength 100-Gb/s PAM-4 TDM-PON Achieving over 32-dB Power Budget Using Simplified and Phase Insensitive Coherent Detection[C], 1-3(2018).

    [12] Erkιlιnç M S, Emmerich R, Habel K et al. PON Transceiver Technologies for ≥50 Gbits/s Per λ: Alamouti Coding and Heterodyne Detection[J]. Journal of Optical Communications and Networking, 12, A162-A170(2020).

    [13] Erkιlιnç M S, Lavery D, Shi K et al. Polarization-insensitive Single-balanced Photodiode Coherent Receiver for Long-reach WDM-PONs[J]. Journal of Lightwave Technology, 34, 2034-2041(2016).

    [14] Zhu Y X, Yi L L, Yang B et al. Comparative Study of Cost-effective Coherent and Direct Detection Schemes for 100 Gb/s/λ PON[J]. Journal of Optical Communications and Networking, 12, D36-D47(2020).

    [15] Saljoghei A, Farhang A, Browning C et al. Comparison of OFDMA and GFDMA for Next-generation Pons[J]. Journal of Optical Communications and Networking, 9, 1064-1073(2017).

    [16] Mun K H, Kang S M, Han S K. Multiple-noise-tolerant CO-OFDMA-PON Uplink Multiple Access Using AM-DAPSK-OFDM with Reflective ONUs[J]. Journal of Lightwave Technology, 36, 5462-5469(2018).

    [17] Gatto A, Parolari P, Brunero M et al. RSOA-based FDM PON Upstream with Flexible Multiple Access Capabilities in an NG-PON2 Compliant Architecture[J]. Journal of Optical Communications and Networking, 8, 302-307(2016).

    [18] Saljoghei A, Gutiérrez F A, Perry P et al. Experimental Comparison of FBMC and OFDM for Multiple Access Uplink PON[J]. Journal of Lightwave Technology, 35, 1595-1604(2017).

    [19] Jung S Y, Jung S M, Han S K. AMO-FBMC for Reduction of Multiple Access Interference between Asynchronous ONUs in PON[C], 1-3(2015).

    [20] Wang H D, Zhou J, Xing Z P et al. Fast-convergence Digital Signal Processing for Coherent PON Using Digital SCM[J]. Journal of Lightwave Technology, 41, 4635-4643(2023).

    [21] Matsuda K, Matsumoto R, Miura H et al. Hardware-efficient Signal Processing Technologies for Coherent PON Systems[C], 1-3(2018).

    [22] Faruk M S, Kikuchi K. Frequency-domain Adaptive Equalization in Digital Coherent Receivers[C], 1-2(2011).

    [23] Li X, Faruk M S, Savory S J. Bidirectional Symmetrical 100 Gb/s/λ Coherent PON Using a Simplified ONU Transceiver[J]. IEEE Photonics Technology Letters, 34, 838-841(2022).

    [24] Saber M G, Osman M, Patel D et al. Demonstration of a 120 ° Hybrid based Simplified Coherent Receiver on SOI for High Speed PON Applications[J]. Optics Express, 26, 31222-31232(2018).

    [25] Xin H Y, Kong D M, Zhang K et al. 100 Gbps Simplified Coherent PON Using Carrier-suppressed PDM-PAM-4 and Phase-recovery-free KK Detection[C], 1-4(2019).

    [26] Zhang J, Jia Z, Xu M et al. Efficient Preamble Design and Digital Signal Processing in Upstream Burst-mode Detection of 100 G TDM Coherent-PON[J]. Journal of Optical Communications and Networking, 13, A135-A143(2021).

    [27] Li G Q, Xing S Z, Li Z Y et al. 200-Gb/s/λ Coherent TDM-PON with Wide Dynamic Range of >30-dB based on Local Oscillator Power Adjustment[C], 1-3(2022).

    [28] Li G Q, Xing S Z, Jia J L et al. Local Oscillator Power Adjustment-based Adaptive Amplification for Coherent TDM-PON with Wide Dynamic Range[J]. Journal of Lightwave Technology, 41, 1240-1249(2023).

    [29] Yin X, Moeneclaey B, Qiu X Z et al. A 10Gb/s APD-based Linear Burst-mode Receiver with 31 dB Dynamic Range for Reach-extended PON Systems[J]. Optics Express, 20, B462-B469(2012).

    [30] Coudyzer G, Ossieur P, Breyne L et al. A 50 Gbit/s PAM-4 Linear Burst-mode Transimpedance Amplifier[J]. IEEE Photonics Technology Letters, 31, 951-954(2019).

    [31] Koma R, Fujiwara M, Kani J I et al. Wide Dynamic Range Burst-mode Digital Coherent Detection Using Fast ALC-EDFA and Pre-calculation of FIR Filter Coefficients[C], 1-3(2016).

    [32] Borkowski R, Straub M, Ou Y et al. FLCS-PON-A 100 Gbit/s Flexible Passive Optical Network: Concepts and Field Trial[J]. Journal of Lightwave Technology, 39, 5314-5324(2021).

    [33] Borkowski R, Lefevre Y, Mahadevan A et al. FLCS-PON—An Opportunistic 100 Gbit/s Flexible PON Prototype with Probabilistic Shaping and Soft-input FEC: Operator Trial and ODN Case Studies[J]. Journal of Optical Communications and Networking, 14, C82-C91(2022).

    [34] Xing S Z, Li G Q, Sun A L et al. Demonstration of PS-QAM based Flexible Coherent PON in Burst-mode with 300 G Peak Rate and Ultra-wide Dynamic Range[J]. Journal of Lightwave Technology, 41, 1230-1239(2023).

    [35] Xu M, Zhang H P, Jia Z S et al. Adaptive Modulation and Coding Scheme in Coherent PON for Enhanced Capacity and Rural Coverage[C], 1-3(2021).

    [36] Zou D D, Li F, Li Z B et al. 100G PAM-6 and PAM-8 Signal Transmission Enabled by Pre-Chirping for 10-km Intra-DCI Utilizing MZM in C-band[J]. Journal of Lightwave Technology, 38, 3445-3453(2020).

    [37] Cano I N, Escayola X, Schindler P C et al. Experimental Demonstration of a Statistical OFDM-PON with Multiband ONUs and Elastic Bandwidth Allocation[J]. Journal of Optical Communications and Networking, 7, A73-A79(2015).

    [38] Welch D, Napoli A, Bäck J et al. Digital Subcarrier Multiplexing: Enabling Software-configurable Optical Networks[J]. Journal of Lightwave Technology, 41, 1175-1191(2023).

    [39] Wang X W, Chen Z W, Yin M Z et al. Laser Sharing Uplink Polarization Division Multiplexing FBMC Passive Optical Network[J]. Journal of Lightwave Technology, 41, 2323-2332(2023).

    [40] Morero D A, Castrillón M A, Aguirre A et al. Design Tradeoffs and Challenges in Practical Coherent Optical Transceiver Implementations[J]. Journal of Lightwave Technology, 34, 121-136(2016).

    [41] Faruk M S, Kikuchi K. Adaptive Frequency-domain Equalization in Digital Coherent Optical Receivers[J]. Optics Express, 19, 12789-12798(2011).

    [42] Zhang J W, Guo C J, Liu J et al. Decision-feedback Frequency-domain Volterra Nonlinear Equalizer for IM/DD OFDM Long-reach PON[J]. Journal of Lightwave Technology, 37, 3333-3342(2019).

    [43] Fatadin I, Savory S J. Compensation of Frequency Offset for 16-QAM Optical Coherent Systems Using QPSK Partitioning[J]. IEEE Photonics Technology Letters, 23, 1246-1248(2011).

    [44] Leven A, Kaneda N, Koc U V et al. Frequency Estimation in Intradyne Reception[J]. IEEE Photonics Technology Letters, 19, 366-368(2007).

    [45] Le S T, Haigh P A, Ellis A D et al. Blind Phase Noise Estimation for CO-OFDM Transmissions[J]. Journal of Lightwave Technology, 34, 745-753(2016).

    [46] Ip E, Kahn J M. Feedforward Carrier Recovery for Coherent Optical Communications[J]. Journal of Lightwave Technology, 25, 2675-2692(2007).

    [47] Matsuda K, Matsumoto R, Suzuki N. Hardware-efficient Adaptive Equalization and Carrier Phase Recovery for 100-Gb/s/λ-based Coherent WDM-PON Systems[J]. Journal of Lightwave Technology, 36, 1492-1497(2018).

    [48] Koma R, Fujiwara M, Kani J I et al. Burst-mode Digital Signal Processing that Pre-calculates FIR Filter Coefficients for Digital Coherent PON Upstream[J]. Journal of Optical Communications and Networking, 10, 461-470(2018).

    [49] Matsumoto R, Matsuda K, Suzuki N. Burst-mode Coherent Detection Using Fast-fitting Pilot Sequence for 100-Gb/sM Coherent TDM-PON System[C], 1-3(2017).

    [50] Mahadevan A, Lefevre Y, Harstead E et al. Flexible Upstream FEC for Higher Throughput, Efficiency, and Robustness for 50G PON[C], 1-3(2022).

    Mingzhu YIN, Wei WANG, Jingshun PAN, Fan LI, Zhaohui LI. Research Progress and Prospect of Key Technologies for Next-Generation Coherent PON[J]. Study On Optical Communications, 2024, 50(1): 23016201
    Download Citation