• Advanced Photonics Nexus
  • Vol. 3, Issue 5, 056002 (2024)
Shuo Zhu1,2, Chutian Wang1, Jianqing Huang1,3, Pei Zhang1..., Jing Han2,* and Edmund Y. Lam1,*|Show fewer author(s)
Author Affiliations
  • 1The University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong, China
  • 2Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Nanjing, China
  • 3Shanghai Jiao Tong University, School of Mechanical Engineering, Key Lab of Education Ministry for Power Machinery and Engineering, Shanghai, China
  • show less
    DOI: 10.1117/1.APN.3.5.056002 Cite this Article Set citation alerts
    Shuo Zhu, Chutian Wang, Jianqing Huang, Pei Zhang, Jing Han, Edmund Y. Lam, "Neuromorphic encryption: combining speckle correlography and event data for enhanced security," Adv. Photon. Nexus 3, 056002 (2024) Copy Citation Text show less
    References

    [1] A. Carnicer, B. Javidi. Optical security and authentication using nanoscale and thin-film structures. Adv. Opt. Photonics, 9, 218-256(2017).

    [2] S. Liu, C. Guo, J. T. Sheridan. A review of optical image encryption techniques. Opt. Laser Technol., 57, 327-342(2014).

    [3] B. Javidi et al. Roadmap on optical security. J. Opt., 18, 083001(2016).

    [4] P. Refregier, B. Javidi. Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett., 20, 767-769(1995).

    [5] B. Javidi, T. Nomura. Securing information by use of digital holography. Opt. Lett., 25, 28-30(2000).

    [6] J. Guo et al. Spatially structured-mode multiplexing holography for high-capacity security encryption. ACS Photonics, 10, 757-763(2023).

    [7] Y. Zhang, B. Wang. Optical image encryption based on interference. Opt. Lett., 33, 2443-2445(2008).

    [8] Y. Xiong, J. Du, C. Quan. Cryptoanalysis on the image encryption scheme based on interference and an amplitude mask. Opt. Commun., 517, 128272(2022).

    [9] Y. Shi et al. Optical image encryption via ptychography. Opt. Lett., 38, 1425-1427(2013).

    [10] Y. Su, W. Xu, J. Zhao. Optical image encryption based on chaotic fingerprint phase mask and pattern-illuminated Fourier ptychography. Opt. Lasers Eng., 128, 106042(2020).

    [11] P. Clemente et al. Optical encryption based on computational ghost imaging. Opt. Lett., 35, 2391-2393(2010).

    [12] Y. Kang et al. One-to-many optical information encryption transmission method based on temporal ghost imaging and code division multiple access. Photonics Res., 7, 1370-1380(2019).

    [13] M. Liao et al. Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium. Sci. Rep., 7, 41789(2017).

    [14] L. Zhou, Y. Xiao, W. Chen. Learning complex scattering media for optical encryption. Opt. Lett., 45, 5279-5282(2020).

    [15] J. Hou, G. Situ. Image encryption using spatial nonlinear optics. eLight, 2, 3(2022).

    [16] H. Zhou et al. Correlated triple hybrid amplitude and phase holographic encryption based on a metasurface. Photonics Res., 10, 678-686(2022).

    [17] F. Zhang et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat. Commun., 14, 1946(2023).

    [18] H. Yang et al. Angular momentum holography via a minimalist metasurface for optical nested encryption. Light Sci. Appl., 12, 79(2023).

    [19] J. R. Fienup, P. S. Idell. Imaging correlography with sparse arrays of detectors. Opt. Eng., 27, 778(1988).

    [20] C. A. Metzler et al. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging. Optica, 7, 63-71(2020).

    [21] X. Bai et al. Coherent imaging of objects through thin-layer highly scattering medium based on optical encryption. Opt. Commun., 506, 127558(2022).

    [22] Y. Shi et al. Multiple-image double-encryption via 2D rotations of a random phase mask with spatially incoherent illumination. Opt. Express, 27, 26050-26059(2019).

    [23] H. Wu et al. Cryptographic analysis on an optical random-phase-encoding cryptosystem for complex targets based on physics-informed learning. Opt. Express, 29, 33558-33571(2021).

    [24] B. Du et al. Event encryption for neuromorphic vision sensors: framework, algorithm, and evaluation. Sensors, 21, 4320(2021).

    [25] G. Gallego et al. Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell., 44, 154-180(2020).

    [26] S. Zhu et al. Computational neuromorphic imaging: principles and applications. Proc. SPIE, 12857, 1285703(2024).

    [27] M. Davies et al. Advancing neuromorphic computing with loihi: a survey of results and outlook. Proc. IEEE, 109, 911-934(2021).

    [28] G. Giamougiannis et al. Neuromorphic silicon photonics with 50 GHz tiled matrix multiplication for deep-learning applications. Adv. Photonics, 5, 016004(2023).

    [29] T. Mavroidis, J. Dainty, M. Northcott. Imaging of coherently illuminated objects through turbulence: plane-wave illumination. J. Opt. Soc. Am. A, 7, 348-355(1990).

    [30] J. Cederquist et al. Phase retrieval from experimental far-field speckle data. Opt. Lett., 13, 619-621(1988).

    [31] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982).

    [32] C. Wang et al. Tracking the shack-hartmann spots using neuromorphic motion compensation, CTu2B–5(2023).

    [33] D. Gehrig et al. EKLT: asynchronous photometric feature tracking using events and frames. Int. J. Comput. Vis., 128, 601-618(2020).

    [34] S. Zhu et al. Removing wall redundancy in non-line-of-sight object-tracking using neuromorphic imaging, CTu2B–6(2023).

    [35] Z. Ge et al. Event-based laser speckle correlation for micro motion estimation. Opt. Lett., 46, 3885-3888(2021).

    [36] C. Metzler et al. prDeep: robust phase retrieval with a flexible deep network, 3501-3510(2018).

    [37] M. Lyu et al. Learning-based lensless imaging through optically thick scattering media. Adv. Photonics, 1, 036002(2019).

    [38] F. Wang et al. Phase imaging with an untrained neural network. Light Sci. Appl., 9, 77(2020).

    [39] S. Zhu et al. Imaging through unknown scattering media based on physics-informed learning. Photonics Res., 9, B210-B219(2021).

    [40] A. Saba et al. Physics-informed neural networks for diffraction tomography. Adv. Photonics, 4, 066001(2022).

    [41] A. Goy et al. Low photon count phase retrieval using deep learning. Phys. Rev. Lett., 121, 243902(2018).

    [42] S. Li et al. Imaging through glass diffusers using densely connected convolutional networks. Optica, 5, 803-813(2018).

    [43] F. Wang et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging. Opt. Express, 27, 25560-25572(2019).

    [44] S. Zhu et al. Efficient color imaging through unknown opaque scattering layers via physics-aware learning. Opt. Express, 29, 40024-40037(2021).

    [45] S. Zhu et al. Displacement-sensible imaging through unknown scattering media via physics-aware learning. Opt. Lasers Eng., 160, 107292(2023).

    [46] Y. Hu, S.-C. Liu, T. Delbruck. v2e: from video frames to realistic DVS events, 1312-1321(2021).

    [47] X. Zhang et al. Different channels to transmit information in scattering media. PhotoniX, 4, 1-13(2023).

    [48] X. Zhang et al. Physical origin and boundary of scalable imaging through scattering media: a deep learning-based exploration. Photonics Res., 11, 1038-1046(2023).

    [49] D. Ha, D. Eck. A neural representation of sketch drawings(2017).

    Shuo Zhu, Chutian Wang, Jianqing Huang, Pei Zhang, Jing Han, Edmund Y. Lam, "Neuromorphic encryption: combining speckle correlography and event data for enhanced security," Adv. Photon. Nexus 3, 056002 (2024)
    Download Citation