• Acta Photonica Sinica
  • Vol. 50, Issue 5, 1 (2021)
Xiaopeng SHAO1、3, Yun SU1、2, Jinpeng LIU1、3、4, Fei LIU1、3、4, Wei LI1、3, and Teli XI1、3、4
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Xidian University, Xi'an7007, China
  • 2Beijing Institute of Space Mechanics & Electricity, Beijing100094, China
  • 3Xi'an Key Laboratory of Computational Imaging, Xi'an710071, China
  • 4Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an710071, China
  • show less
    DOI: 10.3788/gzxb20215005.0511001 Cite this Article
    Xiaopeng SHAO, Yun SU, Jinpeng LIU, Fei LIU, Wei LI, Teli XI. Connotation and System of Computational Imaging(Invited)[J]. Acta Photonica Sinica, 2021, 50(5): 1 Copy Citation Text show less
    References

    [1] R LUKAC. Computational photography: methods and application(2011).

    [2] Xiaopeng SHAO, Fei LIU, Wei LI等. Latest progress in computational imaging technology and application. Laser & Optoelectronics Progress, 57, 020001(2020).

    [3] Yanyan LIU, Yuping DU. Research status and development trend of computational imaging. Electro-Optic Technology Application, 34, 21-24(2019).

    [4] Jufeng ZHAO, Guangmang CUI. Computational imaging-design for acquisition of plenoptic visual information. Spacecraft Recovery & Remote Sensing, 40, 1-14(2019).

    [5] J N TINSLEY, M I MOLODTSOV, R PREVEDEL et al. Direct detection of a single photon by humans. Nature Communications, 7, 12172(2016).

    [6] Y XUE, I G DAVISON, D A BOAS et al. Single-shot 3D wide-field fluorescence imaging with a computational miniature mesoscope. Science Advances, 6(2020).

    [7] O FORS, P WULFKEN et al. The Evryscope: the first full-sky gigapixel-scale telescope, 9145, 91450Z(2014).

    [8] M O TOOLE, D B LINDELL, G WETZSTEIN. Confocal non-line-of-sight imaging based on the light-cone transform. Nature, 555, 338-341(2018).

    [9] J TANIDA, T KUMAGAI, K YAMADA et al. Thin observation module by bound optics (TOMBO): concept and experimental verification. Applied Optics, 40, 1806-1813(2001).

    [10] A ADAMS, D E JACOBS, J DOLSON et al. The frankencamera: An experimental platform for computational photography. Communications of the ACM, 55, 90-98(2012).

    [11] A WIKIPEDI. Light-field camera. https://en.wikipedia.org/wiki/Light-field_camera

    [12] J WENG, P COHEN, M HERNIOU. Camera calibration with distortion models and accuracy evaluation. IEEE Trans Pattern Anal Mach Intell, 14, 965-980(1992).

    [13] Wanqi SHANG, Wenxi ZHANG, Zhou WU等. Three-dimensional measurement system based on full-field heterodyne interferometry. Optics and Precision Engineering, 27, 2097-2104(2019).

    [14] Y LIU, H ZHAO, D SHEN et al. Research on snapshot infrared computational spectral imaging technology. Infrared Device and Infrared Technology(2020).

    [15] L CAO, H ZHANG, D J BRADY et al. Noise suppression for ballistic-photons based compressive in-line holographic imaging through inhomogeneous medium. Optics Express, 28, 10337-10349(2020).

    [16] Fei LIU, Shaojie SUN, Pingli HAN等. Development of underwater polarization imaging technology. Laser & Optoelectronics Progress, 58, 0600001(2021).

    [17] Fei LIU, Yazhe WEI, Pingli HAN等. Design of monocentric wide field-of-view and high-resolution computational imaging system. Acta Physica Sinica, 68, 101-110(2019).

    [18] Xinquan WANG, Qingmei HUANG, ningfang LIAO等. Image reconstruction for the computed-tomography imaging interferometer. Acta Optica Sinica, 27, 1600-1604(2007).

    [19] J ZHANG, C QIAN, J LI et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning. Optics Letters, 43, 3714(2018).

    [20] S ROTTER, S GIGAN. Light fields in complex media: Mesoscopic scattering meets wave control. Reviews of Modern Physics, 89, 015005(2017).

    [21] O KATZ, P HEIDMANN, M FINK et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nature Photonics, 8, 784-790(2014).

    [22] Y LI, Y XUE, L TIAN. Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).

    [23] S K SAHOO, D TANG, C DANG. Single-shot multispectral imaging with a monochromatic camera. Optica, 4, 1209-1213(2017).

    [24] Xiangsheng XIE, Yikun LIU, Haowen LIANG等. Speckle correlation imaging: from point spread functions to light field plenoptics. Acta Optica Sinica, 40, 0111004(2020).

    [25] Qiang YANG, Liangcai CAO, Guofan JIN. Progress in optical focusing techniques aiming to suppress scattering effect in biomedical tissues. Chinese Journal of Lasers, 42, 0901001(2015).

    [26] L WANG, Y WANG, Z LIANG et al. Learning parallax attention for stereo image super-resolution, 12250-12259(2019).

    [27] D S JEON, S H BAEK, I CHOI et al. Enhancing the spatial resolution of stereo images using a parallax prior, 1721-1730(2018).

    [28] P A SABELHAUS, J E DECKER. An overview of the James Webb space telescope (JWST) project. Optical, 5487, 550-563(2004).

    [29] M XIANG, A PAN, Y ZHAO et al. Coherent synthetic aperture imaging for visible remote sensing via reflective Fourier ptychography. Optics Letters, 46, 29-32(2021).

    [30] R HEGERL, W HOPPE. Phase evaluation in generalized diffraction (ptychography), 628-629(1972).

    [31] G ZHENG, R HORSTMEYER, C YANG. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics, 7, 739-745(2013).

    [32] Jiasong SUN, Yuzhen ZHANG, Qian CHEN等. Fourier ptychographic microscopy: theory, advances, and applications. Acta Optica Sinica, 36, 89-107(2016).

    [33] J L HARRIS. Diffraction and resolving power. Journal of the Optical Society of America, 54, 931-933(1964).

    [34] D CHAO, C L CHEN, K HE et al. Learning a deep convolutional network for image super-resolution, 184-199(2014).

    [35] D J BRADY, N HAGEN. Multiscale lens design. Optics Express, 17, 10659-10674(2009).

    [36] A AKIN, O COGAL, K SEYID et al. Hemispherical multiple camera system for high resolution omni-directional light field imaging. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3, 137-144(2013).

    [37] D J BRADY, M E GEHM, R A STACK et al. Multiscale gigapixel photography. Nature, 486, 386-389(2012).

    [38] L ZHU, X SHAO. Research progress on scattering imaging technology. Acta Optica Sinica, 40, 0111005(2020).

    [39] I M VELLEKOOP, A P MOSK. Focusing coherent light through opaque strongly scattering media. Optics Letters, 32, 2309-2311(2007).

    [40] S POPOFF, G LEROSEY, M FINK et al. Image transmission through an opaque material. Nature Communications, 1, 1-5(2010).

    [41] C GUO, J LIU, W LI et al. Imaging through scattering layers exceeding memory effect range by exploiting prior information. Optics Communications, 434, 203-208(2019).

    [42] J BERTOLOTTI, C BLUM et al. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [43] X YANG, Y PU, D PSALTIS. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Optics Express, 22, 3405-3413(2014).

    [44] D TANG, S K SAHOO, V TRAN et al. Single-shot large field of view imaging with scattering media by spatial demultiplexing. Applied Optics, 57, 7533-7538(2018).

    [45] C GUO, J LIU, W LI et al. Imaging through scattering layers exceeding memory effect range by exploiting prior information. Optics Communications, 434, 203-208(2019).

    [46] W LI, J LIU, S HE et al. Multitarget imaging through scattering media beyond the 3D optical memory effect. Optics Letters, 45, 2692-2695(2020).

    [47] G WANG, J LIU, X SUN et al. Pose estimation of hidden object behind a thin scattering layer based on speckle correlation. Optics Communications, 463, 125361(2020).

    [48] M ROWE, E PUGH et al. Target detection in optically scattering media by polarization difference imaging. Applied Optics, 35, 1855-1870(1996).

    [49] Enhancement of the point-spread function for imaging in scattering media by use of polarization-difference imaging. Journal of the Optical Society of America A, 17, 1-10(2000).

    [50] Y Y SCHECHNER, N KARPEL. Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Occanic Engineering, 30, 570-587(2005).

    [51] F LIU, L CAO, X SHAO et al. Polarimetric dehazing utilizing spatial frequency segregation of images. Applied Optics, 54, 8116-8122(2015).

    [52] P HAN, F LIU, K YANG et al. Active underwater descattering and image recovery. Applied Optics, 56, 6631-6638(2017).

    [53] F LIU, P HAN, Y WEI et al. Deeply seeing through highly turbid water by active polarization imaging. Optics Letters, 43, 4903-4906(2018).

    [54] H HU, J LI, X LI et al. Underwater polarization difference imaging with three degrees of freedom. Acta Optica Sinica, 41, 0329001(2021).

    [55] Z LI, X HUANG, Y CAO et al. Single-photon computational 3D imaging at 45 km. Photonics Research, 8, 1532-1540(2020).

    [56] Zhengping LI, Juntian YE, Xin HUANG et al. Single-photon imaging over 200 km. Optica, 8, 344-349(2021).

    [57] K MONAKHOVA, K YANNY, N AGGARWAL et al. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array. Optica, 7, 1298-1307(2020).

    [58] K KUBALA, E DOWSKI, W T CATHEY. Reducing complexity in computational imaging systems. Optics Express, 11, 2102-2108(2003).

    [59] T YANG, G F JIN, J ZHU. Automated design of freeform imaging systems. Light: Science & Applications, 6(2017).

    [60] D G STORK, M D ROBINSON. Information-based methods for optics/image processing co-design. Information Optics DNA-Based Nanoscale Integration, 860, 125-135(2006).

    [61] M D ROBINSON, D G STORK. Joint digital-optical design of super resolution multiframe imaging systems. Applied Optics, 47, B11-B20(2008).

    [62] T VETTENBURG, A R HARVEY. Holistic optical-digital hybrid-imaging design: wide-field reflective imaging. Applied Optics, 52, 3931-3936(2013).

    [63] K ZHANG, Y H JUNG, S MIKAEL et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nature Communications, 8, 1782(2017).

    CLP Journals

    [1] Yaxian HOU, Rujin ZHAO, Yuebo MA, Longdong HE, Zifa ZHU. An On-orbit Correction Method for High Dynamic APS Star Tracker Based on Adaptive Filtering[J]. Acta Photonica Sinica, 2021, 50(2): 155

    Xiaopeng SHAO, Yun SU, Jinpeng LIU, Fei LIU, Wei LI, Teli XI. Connotation and System of Computational Imaging(Invited)[J]. Acta Photonica Sinica, 2021, 50(5): 1
    Download Citation