[1] C FANG. Space weather comes into our life. Chin.J.Nat., 28, 194-198(2006).
[2] Y QIU, S H RAO, C LI et al. Calibration procedures for the CHASE/HIS science data. Sci Sin-Phys.Mech.Astron., 65, 289603(2022).
[3] C LI, C FANG, Z LI et al. The chinese hα solar explorer (CHASE) mission:an overview. Sci.China-Phys.Mech.Astron., 65, 289602(2022).
[4] W Q GAN, C ZHU, Y Y DENG et al. Advanced space-based solar observatory (ASO-S):an overview. Res.Astron. Astrophys., 19, 156(2019).
[5] X Y BAI, H TIAN, Y Y DENG et al. The solar upper transition region imager (SUTRI) onboard the SATech-01 satellite. Res.Astron.Astrophys., 23(2023).
[6] N J FOX, M C VELLI, S D BALE et al. The solar probe plus mission:humanity’s first visit to our star. Space Sci.Rev., 204, 7-48(2016).
[7] S D BALE, S T BADMAN, J W BONNELL et al. Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 576, 237-242(2019).
[8] R A HOWARD, A VOURLIDAS, V BOTHMER et al. Near-Sun observations of an F-corona decrease and K-corona fine structure. Nature, 576, 232-236(2019).
[9] D J MCCOMAS, E R CHRISTIAN, C M S COHEN et al. Probing the energetic particle environment near the sun. Nature, 576, 223-227(2019).
[10] J C KASPER, S D BALE, J W BELCHER et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature, 576, 228-231(2019).
[11] J C KASPER, K G KLEIN, E LICHKO et al. Parker solar probe enters the magnetically dominated solar corona. Phys.Rev.Lett., 127, 255101(2021).
[12] O M ROMEO, C R BRAGA, S T BADMAN et al. Near-sun in situ and remote-sensing observations of a coronal mass ejection and its effect on the heliospheric current sheet. Astrophys.J., 954, 168(2023).
[13] J LIN, T G FORBES. Effects of reconnection on the coronal mass ejection process. J.Geophys.Res., 105, 2375-2392(2000).
[14] J LIN. Energetics and propagation of coronal mass ejections in different plasma environments. Chin.J.Astron.Astrophys., 2, 539-556(2002).
[15] J LIN, S MANCUSO, A VOURLIDAS. Theoretical investigation of the onsets of type ii radio bursts during solar eruptions. Astrophys.J., 649, 1110-1123(2006).
[16] A J TYLKA, C M S COHEN, W F DIETRICH et al. Onsets and release times in solar particle events, 3305-3308(2003).
[17] Y K KO, L A FISK, J GEISS et al. An empirical study of the electron temperature and heavy ion velocities in the south polar coronal hole. Sol.Phys., 171, 345-361(1997).
[18] E LANDI, J R GRUESBECK, S T LEPRI et al. Charge state evolution in the solar wind.II.Plasma charge state composition in the inner corona and accelerating fast solar wind. Astrophys.J., 761, 48(2012).
[19] C C SHEN, J C RAYMOND, Z MIKIĆ et al. Time-dependent ionization in a steady flow in an MHD model of the solar corona and wind. Astrophys.J., 850, 26(2017).
[20] E DZIFČÁKOVÁ, J DUDÍK, A ZEMANOVÁ et al. KAPPA:A package for the synthesis of optically thin spectra for the non-Maxwellian κ-distributions.II.Major update to compatibility with CHIANTI version 10. Astrophys.J.Suppl.Ser., 257, 62(2021).
[21] E N PARKER. Dynamics of the interplanetary gas and magnetic fields. Astrophys.J., 128, 664(1958).
[22] N E RAOUAFI, G STENBORG, D B SEATON et al. Magnetic reconnection as the driver of the solar wind. Astrophys.J., 945, 28(2023).
[23] D MULLER, CYR O C ST, I ZOUGANELIS et al. The solar orbiter mission.Science overview. Astron.Astrophys., 642(2020).
[24] Y Y DENG, G P ZHOU, S W DAI et al. Solar polar-orbit observatory. Chin.Sci.Bull., 68, 298-308(2023).
[25] A CIARAVELLA, J C RAYMOND, J LIN et al. Elemental abundances and post-coronal mass ejection current sheet in a very hot active region. Astrophys.J., 575, 1116-1130(2002).
[26] J LIN, Y K KO, L SUI et al. Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys.J., 622, 1251-1264(2005).
[27] J LIN, J LI, T G FORBES et al. Features and properties of coronal mass ejection/flare current sheets. Astrophys.J., 658, 123-126(2007).
[28] J LIN, J LI, Y K KO et al. Investigation of thickness and electrical resistivity of the current sheets in solar eruptions. Astrophys.J., 693, 1666-1677(2009).
[29] J QIU, H M WANG, C Z CHENG et al. Magnetic reconnection and mass acceleration in flare-coronal mass ejection events. Astrophys.J., 604, 900(2004).
[30] Y K KO, J C RAYMOND, J LIN et al. Dynamical and physical properties of a post-coronal mass ejection current sheet. Astrophys.J., 594, 1068-1084(2003).
[31] J LIN, N A MURPHY, C C SHEN et al. Review on current sheets in CME development:theories and observations. Space Sci.Rev., 194, 237-302(2015).
[32] J LIN, L NI. Large-scale current sheets in flares and CMEs. Geophys.Monograph Ser., 235, 239-255(2018).
[33] J YE, J C RAYMOND, Z X MEI et al. Three-dimensional simulation of thermodynamics on confined turbulence in a large-scale CME-flare current sheet. Astrophys.J., 955, 88(2023).
[34] A BEMPORAD, G L SHI, S T LI et al. First determination in the extended corona of the 2d thermal evolution of a current sheet after a solar eruption. Astrophys.J., 964, 92(2024).
[35] Y LI, J LIN. Acceleration of electrons and protons in reconnecting current sheets including single or multiple X-points. Sol.Phys., 279, 91-113(2012).
[36] Y LI, N WU, J LIN. Charged-particle acceleration in a reconnecting current sheet including multiple magnetic islands and a nonuniform background magnetic field. Astron.Astrophys., 605, 120(2017).
[37] Y LI, L NI, J YE et al. Particle accelerations in a 2.5-dimensional reconnecting current sheet in turbulence. Astrophys.J., 938, 24(2022).
[38] N H BIAN, G LI. Lagrangian perspectives on the small scale structure of Alfvénic turbulence and stochastic models for the dispersion of fluid particles and magnetic field lines in the solar wind. Astrophys.J.Suppl.Seri., 4(2024).
[39] X Y XIE, G LI, K K REEVES et al. Probing turbulence in solar flares from SDO/AIA emission lines. Frontier in Astron.Space Sci., 11, 1383746(2024).
[40] U MITRA-KRAEV, A O BENZ. A nanoflare heating model for the quiet solar corona. Astron.Astrophys., 373, 318-328(2001).
[41] M ASGARI-TARGHI, A A VAN BALLEGOOIJEN, S R CRANMER et al. The spatial and temporal dependence of coronal heating by Alfvén wave turbulence. Astrophys.J., 773, 111(2013).
[42] J W CIRTAIN, L GOLUB, A WINGEBARGER et al. Energy release in the solar corona from spatially resolved magnetic braids. Nature, 493, 501-503(2013).
[43] A A VAN BALLEGOOIJEN, M ASGARI-TARGHI, S R CRANMER et al. Heating of the solar chromosphere and corona by alfvén wave turbulence. Astrophys.J., 736, 3(2011).
[44] S R CRANMER, M ASGARI-TARGHI, M P MIRALLES et al. The role of turbulence in coronal heating and solar wind expansion. Philosophical Transactions of the Royal Society of London Series A, 373, 20140148(2015).
[45] M J ASCHWANDEN. Reconciling power-law slopes in solar flare and nanoflare size distributions. Astrophys.J.Lett., 934(2022).
[46] P J CARGILL. Active region emission measure distributions and implications for nanoflare heating. Astrophys.J., 784, 49(2014).
[47] J J LIU, M CARLSSON, C J NELSON et al. Co-spatial velocity and magnetic swirls in the simulated solar photosphere. Astron.Astrophys., 632(2019).
[48] E N PARKER. The solar-flare phenomenon and the theory of reconnection and annihiliation of magnetic fields. Astrophys.J.Suppl.Ser., 8, 177(1963).
[49] J LIN, J C RAYMOND, A A VAN BALLEGOOIJEN. The role of magnetic reconnection in the observable features of solar eruptions. Astrophys.J., 602, 422-435(2004).
[50] B SCHMIEDER, H TIAN, T KUCERA et al. Open questions on prominences from coordinated observations by IRIS,Hinode,SDO/AIA,THEMIS,and the Meudon/MSDP. Astron.Astrophys., 569(2014).
[51] S MANCUSO, M V GARZELLI. Radial profile of the inner heliospheric magnetic field as deduced from Faraday rotation observations. Astron.Astrophys., 553(2013).
[52] A KUMARI, R RAMESH, C KATHIRAVAN et al. Direct estimates of the solar coronal magnetic field using contemporaneous extreme-ultraviolet,radio,and white-light observations. Astrophys.J., 881, 24(2019).
[53] D KURIDZE, M MATHIOUDAKIS, H MORGAN et al. Mapping the magnetic field of flare coronal loops. Astrophys.J., 874, 126(2019).
[54] G D FLEISHMAN, D E GARY, B CHEN et al. Decay of the coronal magnetic field can release sufficient energy to power a solar flare. Science, 367, 278-280(2020).
[55] Z H YANG, C BETHGE, H TIAN et al. Global maps of the magnetic field in the solar corona. Science, 369, 694-697(2020).
[56] J R SZALAY, P POKORNÝ, S D BALE et al. The near-sun dust environment:initial observations from Parker Solar Probe. Astrophys.J.Suppl.Ser., 246, 27(2020).
[57] Y H CHEN, Z LIU, P F CHEN et al. Can the Parker Solar Probe detect a CME-flare current sheet?. Astrophys.J.Suppl.Ser., 269, 22(2023).
[59] J FENG, S SHIAN, B XIAO et al. First-principles calculations of the high-temperature phase transformation in yttrium tantalate. Phys.Rev.B., 90(2014).
[60] L CHEN, B H LI, J FENG. Rare-earth tantalates for next-generation thermal barrier coatings. Progress in Mater.Sci., 144, 101265(2024).
[61] E R PRIEST. MHD of the sun(2014).
[62] L E Bell. Cooling,heating,generating power,and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461(2008).
[63] S ZHANG, Z LIU, X ZHANG et al. Sustainable thermal energy harvest for generating electricity. The Innovation, 5, 100591(2024).
[64] L LIU, K L BAO, J C FENG et al. Design and analysis of an advanced thermal management system for the solar close observations and proximity experiments spacecraft. Astronomical Techniques and Instruments, 1, 52-61(2024).
[65] K L BAO, X F ZHU, J C FENG et al. Application and prospect of the fluid cooling system of solar arrays for probing the Sun. Astronomical Techniques and Instruments, 1, 62-70(2024).
[68] Y M WANG, X Y BAI, C Y CHEN et al. Solar ring mission:building a panorama of the sun and inner-heliosphere. Advances in Space Research, 71, 1146(2023).
[69] C FANG, B Z GU, X Y YUAN et al. 2.5 m wide-field and high-resolution telescope. Sci Sin-Phys.Mech.Astron., 49(2019).