• Spacecraft Recovery & Remote Sensing
  • Vol. 46, Issue 1, 123 (2025)
Lingfeng YIN, Xudong TONG*, and Huan NI
Author Affiliations
  • School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Technology, Nanjing 210044, China
  • show less
    DOI: 10.3969/j.issn.1009-8518.2025.01.011 Cite this Article
    Lingfeng YIN, Xudong TONG, Huan NI. Object Detection in Remote Sensing Images Based on Super-Resolution Hierarchical Fusion Mechanism[J]. Spacecraft Recovery & Remote Sensing, 2025, 46(1): 123 Copy Citation Text show less
    [in Chinese]
    Fig. 1. [in Chinese]
    [in Chinese]
    Fig. 2. [in Chinese]
    [in Chinese]
    Fig. 3. [in Chinese]
    [in Chinese]
    Fig. 4. [in Chinese]
    [in Chinese]
    Fig. 5. [in Chinese]
    [in Chinese]
    Fig. 6. [in Chinese]
    [in Chinese]
    Fig. 7. [in Chinese]
    [in Chinese]
    Fig. 8. [in Chinese]
    [in Chinese]
    Fig. 9. [in Chinese]
    [in Chinese]
    Fig. 10. [in Chinese]
    方法模态各分类目标平均精度AP/%mAP50/%参数量FLOPs
    轿车皮卡露营车货车其他拖拉机汽艇面包车
    YOLOv8sRGB78.9165.2965.9854.1444.4658.7131.4848.9755.9911.13×1069.1×109
    IR77.0566.9868.4357.9027.2940.0229.7657.2653.0911.13×1069.1×109
    Multi77.3862.3967.1553.0145.2858.8632.9455.5456.5711.13×1069.2×109
    Table 1. VEDAI benchmark detection performance
    实验残差融合单分支增强超分辅助分支L1 损失mAP50/%参数量FLOPs
    注:√ 表示启用模块或改动。
    A70.5612.49×10629.6×109
    B72.9412.75×10630.3×109
    C78.4213.25×10631.0×109
    D79.4513.25×10631.2×109
    Table 2. Ablation experiment
    方法模态各分类目标平均精度AP/%mAP50/%参数量FLOPs
    轿车皮卡露营车货车其他拖拉机汽艇面包车
    YOLOv8s[24]RGB78.9165.2965.9854.1444.4658.7131.4848.9755.9911.13×1069.1×109
    IR77.0566.9868.4357.9027.2940.0229.7657.2653.0911.13×1069.1×109
    Multi77.3862.3967.1553.0145.2858.8632.9455.5456.5711.13×1069.2×109
    Dual-YOLO[23]Multi80.0768.0166.1251.5245.7664.3821.6240.9354.8212.19×10619.3×109
    DM-YOLO[25]RGB79.6874.4977.0980.9737.3370.6560.8463.5668.8312.37×10620.4×109
    IR76.7774.3564.7463.4545.0478.1270.0477.9168.1812.37×10620.4×109
    Multi86.7175.9866.6277.1743.0462.3070.7584.3870.8712.38×10620.5×109
    SuperYOLO[19]RGB90.3082.6676.6968.5553.8679.4858.0870.3072.4910.83×10626.5×109
    IR87.9081.3976.9061.5639.3960.5646.0871.0065.6010.83×10626.5×109
    Multi91.1385.6679.3070.1857.3380.4160.2476.5075.0910.85×10629.6×109
    本文方法Multi92.0488.9884.9875.2563.3984.6769.2477.0579.4513.25×10631.2×109
    Table 3. VEDAI accuracy comparison table
    方法模态各分类目标平均精度AP/%mAP50/%参数量FLOPs
    轿车货车卡车公交车面包车
    YOLOv8s[24]RGB90.8943.9158.8789.7643.8465.4511.13×10614.2×109
    IR91.0348.8259.7192.7950.9268.6511.13×10614.2×109
    Multi94.5954.8866.1490.5158.1772.8611.13×10614.3×109
    Dual-YOLO[23]Multi98.1652.8765.7295.7746.5871.8212.19×10610.5×109
    DM-YOLO[25]RGB89.9548.2658.2789.6544.4366.1112.37×10622.6×109
    IR97.6362.3372.5493.7453.9476.0412.37×10622.6×109
    Multi97.9164.3474.6395.0557.7477.9312.38×10622.7×109
    SuperYOLO[19]RGB86.8232.5349.1382.8836.6857.6110.83×10625.9×109
    IR97.3553.2565.6192.3049.1371.5310.83×10625.9×109
    Multi97.4956.0569.1193.6151.7973.6110.85×10628.1×109
    本文方法Multi98.1768.6181.6896.0061.9881.2913.25×10626.1×109
    Table 4. Drone Vehicle accuracy comparison table
    Lingfeng YIN, Xudong TONG, Huan NI. Object Detection in Remote Sensing Images Based on Super-Resolution Hierarchical Fusion Mechanism[J]. Spacecraft Recovery & Remote Sensing, 2025, 46(1): 123
    Download Citation