[1] 1管雅喆, 任萌, 郭冬利, 等. 肺癌筛查研究进展[J]. 中国肺癌杂志, 2020, 23(11): 954-960. doi: 10.3779/j.issn.1009-3419.2020.101.37GUANY ZH, RENM, GUOD L, et al. Research progress on lung cancer screening[J]. Chinese Journal of Lung Cancer, 2020, 23(11): 954-960.(in Chinese). doi: 10.3779/j.issn.1009-3419.2020.101.37
[2] 2王汉萍, 张力, 梁智勇. 正确看待细胞病理学在肺癌诊断中的意义[J]. 中华病理学杂志, 2013, 42(11): 726-728. doi: 10.3760/cma.j.issn.0529-5807.2013.11.002WANGH P, ZHANGL, LIANGZH Y. Correctly view the significance of cytopathology in the diagnosis of lung cancer[J]. Chinese Journal of Pathology, 2013, 42(11): 726-728.(in Chinese). doi: 10.3760/cma.j.issn.0529-5807.2013.11.002
[3] S HANS, F O M JOSEPH. Control of a flexible bevel-tipped needle using super-twisting controller based sliding mode observer. ISA Transactions, 109, 186-198(2021).
[4] Y KOETHE, S XU, G VELUSAMY et al. Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study. European Radiology, 24, 723-730(2014).
[5] 5孔祥战. 颅颌面穿刺诊疗手术机器人关键技术研究[D]. 北京: 北京理工大学, 2015.KONGX ZH. Study on Key Technologies of Needle Insertion Diagnosis and Therapy Surgery Robotic System for Craniomaxillofacial[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese)
[6] M A LIN, A F SIU, J H BAE et al. HoloNeedle: augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction. IEEE Robotics and Automation Letters, 3, 4156-4162(2018).
[7] 7赵士元, 崔继文, 陈勐勐. 光纤形状传感技术综述[J]. 光学 精密工程, 2020, 28(1): 10-29. doi: 10.3788/ope.20202801.0010ZHAOSH Y, CUIJ W, CHENM M. Review on optical fiber shape sensing technology[J]. Opt. Precision Eng., 2020, 28(1): 10-29.(in Chinese). doi: 10.3788/ope.20202801.0010
[8] 8张贯一. 锁骨下静脉穿刺机器人及穿刺力模型研究[D]. 哈尔滨: 哈尔滨理工大学, 2019.ZHANGG Y. Study on Subclavian Vein Puncture Robot and Puncture Force Model[D]. Harbin: Harbin University of Science and Technology, 2019. (in Chinese)
[9] J Z GUO, E AZIMI, B GONENC et al. MRI-guided needle steering for targets in motion based on Fiber Bragg Grating sensors, 1-3(2016).
[10] 10郭永兴, 杨跃辉, 熊丽. 双层正交的光纤布拉格光栅柔性形状传感技术[J]. 光学 精密工程, 2021, 29(10): 2306-2315. doi: 10.37188/OPE.20212910.2306GUOY X, YANGY H, XIONGL. Double-layer orthogonal fiber Bragg gratings flexible shape sensing technology[J]. Opt. Precision Eng., 2021, 29(10): 2306-2315.(in Chinese). doi: 10.37188/OPE.20212910.2306
[11] 11孙广开, 曲道明, 闫光, 等. 软体气动驱动器弯曲变形光纤传感与形状重构[J]. 光学 精密工程, 2019, 27(5): 1052-1059. doi: 10.3788/ope.20192705.1052SUNG K, QUD M, YANG, et al. Bending deformation of optical fiber sensing and shape reconstruction of soft pneumatic driver[J]. Opt. Precision Eng., 2019, 27(5): 1052-1059.(in Chinese). doi: 10.3788/ope.20192705.1052
[12] M LI, G LI, B GONENC et al. Towards human-controlled, real-time shape sensing based flexible needle steering for MRI-guided percutaneous therapies. The International Journal of Medical Robotics and Computer Assisted Surgery, 13(2017).
[13] J S KIM, J Z GUO, M CHATRASINGH et al. Shape determination during needle insertion With curvature measurements, 201-208(2017).
[14] F KHAN, A DONDER, S GALVAN et al. Pose measurement of flexible medical instruments using fiber Bragg gratings in multi-core fiber. IEEE Sensors Journal, 20, 10955-10962(2020).
[15] L F ZHANG, C L LI, X H ZHANG et al. A new method for fiber Bragg grating based needle shape sensing calibration, 1953-1958(2020).
[16] 16李勐. 穿刺手术机器人穿刺针—软组织交互机理、规划控制及感知技术研究[D]. 北京: 北京理工大学, 2017.LIM. Research on Needle-soft Tissue Interaction, Path Planning and Sensor Integration of Robotically Assisted Needle Placement[D]. Beijing: Beijing Institute of Technology, 2017. (in Chinese)
[17] 17韩军, 张磊, 段荣鑫, 等. 基于BP神经网络的齿圈装夹变形预测研究[J]. 机电工程, 2020, 37(6): 641-646. doi: 10.3969/j.issn.1001-4551.2020.06.008HANJ, ZHANGL, DUANR X, et al. Prediction of gear ring clamping deformation based on BP neural network[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(6): 641-646.(in Chinese). doi: 10.3969/j.issn.1001-4551.2020.06.008
[18] K R HENKEN, J DANKELMAN, J J VAN DEN DOBBELSTEEN et al. Error analysis of FBG-based shape sensors for medical needle tracking. IEEE/ASME Transactions on Mechatronics, 19, 1523-1531(2014).
[19] 19杨莹莹, 刘翔, 石蕴玉. 一种改进的AGV障碍物检测方法[J]. 电子科技, 2022, 35(9): 1-6.YANGY Y, LIUX, SHIY Y. An improved obstacle detection method for AGV[J]. Electronic Science and Technology, 2022, 35(9): 1-6.(in Chinese)