[1] Litjens G, Kooi T, Bejnordi B E et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 42, 60-88(2017).
[2] Ma J, Zhang Y, Gu S et al. AbdomenCT-1K: is abdominal organ segmentation a solved problem?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 6695-6714(2022).
[3] Zhang Y C, Jiao R S. Towards segment anything model (SAM) for medical image segmentation: a survey[EB/OL]. http://arxiv.org/abs/2305.03678v3
[4] He S, Bao R N, Li J P et al. Computer-vision benchmark segment-anything model (SAM) in medical images: accuracy in 12 datasets[EB/OL]. http://arxiv.org/abs/2304.09324v3
[5] Wang X, Chen G Y, Qian G W et al. Large-scale multi-modal pre-trained models: a comprehensive survey[J]. Machine Intelligence Research, 20, 447-482(2023).
[6] Zhou C, Li Q, Li C et al. A comprehensive survey on pretrained foundation models: a history from BERT to ChatGPT[EB/OL]. http://arxiv.org/abs/2302.09419v3
[7] Brown T B, Mann B, Ryder N et al. Language models are few-shot learners[C], 1877-1901(2020).
[8] Stefanini M, Cornia M, Baraldi L et al. From show to tell: a survey on deep learning-based image captioning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 539-559(2023).
[9] Ramesh A, Pavlov M, Goh G et al. Zero-shot text-to-image generation[C]. Virtual Event. [S.l.: s.n.], 8821-8831(2021).
[10] Jia C, Yang Y F, Xia Y et al. Scaling up visual and vision-language representation learning with noisy text supervision[EB/OL]. http://arxiv.org/abs/2102.05918v2
[11] Kirillov A, Mintun E, Ravi N et al. Segment anything[EB/OL]. http://arxiv.org/abs/2304.02643v1
[12] Dosovitskiy A, Beyer L, Kolesnikov A et al. An image is worth[EB/OL], 16-16. https://arxiv.org/abs/2010.11929
[13] Wang D, Zhang J, Du B et al. SAMRS: scaling-up remote sensing segmentation dataset with segment anything model[C]. 16(2023).
[14] Osco L P, Wu Q S, de Lemos E L et al. The segment anything model (SAM) for remote sensing applications: from zero to one shot[J]. International Journal of Applied Earth Observation and Geoinformation, 124, 103540(2023).
[15] Ali H, Bulbul M F, Shah Z. Prompt engineering in medical image segmentation: an overview of the paradigm shift[C], 16-17(2023).
[16] Huang Y H, Yang X, Liu L et al. Segment anything model for medical images?[J]. Medical Image Analysis, 92, 103061(2024).
[17] Tang L, Xiao H K, Li B. Can SAM segment anything?[EB/OL]. http://arxiv.org/abs/2304.04709v2
[18] Chen F, Chen L Y, Han H J et al. The ability of segmenting anything model (SAM) to segment ultrasound images[J]. Bioscience Trends, 17, 211-218(2023).
[19] Xiao W X, Li H F, Zhang Y F et al. Medical image fusion based on multi-scale feature learning and edge enhancement[J]. Laser & Optoelectronics Progress, 59, 0617029(2022).
[20] Ma J, He Y T, Li F F et al. Segment anything in medical images[J]. Nature Communications, 15, 654(2024).
[21] Hu M Z, Li Y H, Yang X F. SkinSAM: empowering skin cancer segmentation with segment anything model[EB/OL]. http://arxiv.org/abs/2304.13973v1
[22] Liu Y H, Zhang J M, She Z C et al. SAMM (segment any medical model):[EB/OL], -3. http://arxiv.org/abs/2304.05622v4
[23] Gao Y F, Xia W, Hu D D et al. DeSAM: decoupling segment anything model for generalizable medical image segmentation[EB/OL]. http://arxiv.org/abs/2306.00499v1
[24] Zhang L Y, Deng X K, Lu Y. Segment anything model (SAM) for medical image segmentation: a preliminary review[C]. Turkiye, 4187-4194(2023).
[25] Zhang Y C, Shen Z R, Jiao R S. Segment anything model for medical image segmentation: current applications and future directions[EB/OL]. http://arxiv.org/abs/2401.03495v1
[26] Radford A, Kim J W, Hallacy C et al. Learning transferable visual models from natural language supervision[EB/OL]. http://arxiv.org/abs/2103.00020v1
[27] Deng R N, Cui C, Liu Q et al. Segment anything model (SAM) for digital pathology: assess zero-shot segmentation on whole slide imaging[EB/OL]. http://arxiv.org/abs/2304.04155v1
[28] The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways[J]. Nature, 455, 1061-1068(2008).
[29] Barisoni L, Nast C C, Jennette J C et al. Digital pathology evaluation in the multicenter Nephrotic Syndrome Study Network (NEPTUNE)[J]. Clinical Journal of the American Society of Nephrology: CJASN, 8, 1449-1459(2013).
[30] Kumar N, Verma R, Sharma S et al. A dataset and a technique for generalized nuclear segmentation for computational pathology[J]. IEEE Transactions on Medical Imaging, 36, 1550-1560(2017).
[31] Hu C F, Xia T Y, Ju S H et al. When SAM meets medical images: an investigation of segment anything model (SAM) on multi-phase liver tumor segmentation[EB/OL]. http://arxiv.org/abs/2304.08506v6
[32] Zhang L, Liu Z L, Zhang L et al. Segment anything model (SAM) for radiation oncology[EB/OL]. http://arxiv.org/abs/2306.11730v2
[33] Roy S, Wald T, Koehler G et al. SAM[EB/OL]. http://arxiv.org/abs/2304.05396v1
[34] Ji Y F, Bai H T, Yang J et al. AMOS: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation[EB/OL]. https://arxiv.org/abs/2206.08023
[35] Putz F, Grigo J, Weissmann T et al. The segment anything foundation model achieves favorable brain tumor autosegmentation accuracy on MRI to support radiotherapy treatment planning[EB/OL]. http://arxiv.org/abs/2304.07875v1
[36] Menze B H, Jakab A, Bauer S et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging, 34, 1993-2024(2015).
[37] Zhang P, Wang Y P. Segment anything model for brain tumor segmentation[EB/OL]. https://arxiv.org/abs/2309.08434
[38] Mohapatra S, Gosai A, Schlaug G. Sam vs bet: a comparative study for brain extraction and segmentation of magnetic resonance images using deep learning[EB/OL]. http://arxiv.org/abs/2304.04738v3
[39] Liew S L, Anglin J M, Banks N W et al. A large, open source dataset of stroke anatomical brain images and manual lesion segmentations[J]. Scientific Data, 5, 180011(2018).
[40] Kuijf H J, Biesbroek J M, de Bresser J et al. Standardized assessment of automatic segmentation of white matter hyperintensities and results of the WMH segmentation challenge[J]. IEEE Transactions on Medical Imaging, 38, 2556-2568(2019).
[41] Hu M Z, Li Y H, Yang X F. BreastSAM: a study of segment anything model for breast tumor detection in ultrasound images[EB/OL]. http://arxiv.org/abs/2305.12447v1
[42] Al-Dhabyani W, Gomaa M, Khaled H et al. Dataset of breast ultrasound images[J]. Data in Brief, 28, 104863(2020).
[43] Zhou T, Zhang Y Z, Zhou Y et al. Can SAM segment polyps?[EB/OL]. http://arxiv.org/abs/2304.07583v1
[44] Jha D, Smedsrud P H, Riegler M A et al. Kvasir-SEG: a segmented polyp dataset[M]. Multimedia modeling, 11962, 451-462(2020).
[45] Bernal J, Sánchez F J, Fernández-Esparrach G et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 43, 99-111(2015).
[46] Tajbakhsh N, Gurudu S R, Liang J M. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 35, 630-644(2016).
[47] Silva J, Histace A, Romain O et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer[J]. International Journal of Computer Assisted Radiology and Surgery, 9, 283-293(2014).
[48] Vázquez D, Bernal J, Sánchez F J et al. A benchmark for endoluminal scene segmentation of colonoscopy images[J]. Journal of Healthcare Engineering, 2017, 4037190(2017).
[49] Wang A, Islam M, Xu M Y et al. SAM meets robotic surgery: an empirical study on generalization, robustness and adaptation[M]. Medical image computing and computer assisted intervention-MICCAI 2023 workshops, 14393, 234-244(2023).
[50] Allan M, Shvets A, Kurmann T et al. 2017 robotic instrument segmentation challenge[EB/OL]. http://arxiv.org/abs/1902.06426v2
[51] Allan M, Kondo S, Bodenstedt S et al. 2018 robotic scene segmentation challenge[EB/OL]. http://arxiv.org/abs/2001.11190v3
[52] Choi W, Dahiya N, Nadeem S. CIRDataset: a large-scale dataset for clinically-interpretable lung nodule radiomics and malignancy prediction[M]. Medical image computing and computer-assisted intervention-MICCAI 2022, 13435, 13-22(2022).
[53] Attiyeh M A, Chakraborty J, Doussot A et al. Survival prediction in pancreatic ductal adenocarcinoma by quantitative computed tomography image analysis[J]. Annals of Surgical Oncology, 25, 1034-1042(2018).
[54] Antonelli M, Reinke A, Bakas S et al. The medical segmentation decathlon[J]. Nature Communications, 13, 4128(2022).
[55] Bilic P, Christ P, Li H B et al. The liver tumor segmentation benchmark (LiTS)[J]. Medical Image Analysis, 84, 102680(2023).
[56] Bernard O, Lalande A, Zotti C et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?[J]. IEEE Transactions on Medical Imaging, 37, 2514-2525(2018).
[57] Liu Q D, Dou Q, Yu L Q et al. MS-net: multi-site network for improving prostate segmentation with heterogeneous MRI data[J]. IEEE Transactions on Medical Imaging, 39, 2713-2724(2020).
[58] Xiong Z H, Xia Q, Hu Z Q et al. A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging[J]. Medical Image Analysis, 67, 101832(2021).
[59] Bakas S, Akbari H, Sotiras A et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[J]. Scientific Data, 4, 170117(2017).
[60] Bakas S, Reyes M, Jakab A et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge[EB/OL]. http://arxiv.org/abs/1811.02629v3
[61] Codella N, Rotemberg V, Tschandl P et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC)[EB/OL]. http://arxiv.org/abs/1902.03368v2
[62] Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Scientific Data, 5, 180161(2018).
[63] Jaeger S, Candemir S, Antani S et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases[J]. Quantitative Imaging in Medicine and Surgery, 4, 475-477(2014).
[64] Cheng D J, Qin Z Y, Jiang Z K et al. SAM on medical images: a comprehensive study on three prompt modes[EB/OL]. http://arxiv.org/abs/2305.00035v1
[65] Boccardi M, Bocchetta M, Morency F C et al. Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol[J]. Alzheimer’s & Dementia, 11, 175-183(2015).
[66] Gong H F, Chen J X, Chen G Q et al. Thyroid region prior guided attention for ultrasound segmentation of thyroid nodules[J]. Computers in Biology and Medicine, 155, 106389(2023).
[67] Wang C B, Mahbod A, Ellinger I et al. FUSeg: the foot ulcer segmentation challenge[EB/OL]. http://arxiv.org/abs/2201.00414v1
[68] Hu J J, Chen Y Y, Yi Z. Automated segmentation of macular edema in OCT using deep neural networks[J]. Medical Image Analysis, 55, 216-227(2019).
[69] Tahir A M, Chowdhury M E H, Khandakar A et al. COVID-19 infection localization and severity grading from chest X-ray images[J]. Computers in Biology and Medicine, 139, 105002(2021).
[70] Zhou Z, Zhang S J, Zhang X Y. Improved U-type neural network method for medical nuclear image segmentation[J]. Journal of Chinese Computer Systems, 44, 110-116(2023).
[71] Li Y H, Hu M Z, Yang X F. Polyp-SAM: transfer SAM for polyp segmentation[EB/OL]. http://arxiv.org/abs/2305.00293v1
[72] Wu J D, Ji W, Liu Y P et al. Medical SAM adapter: adapting segment anything model for medical image segmentation[EB/OL]. http://arxiv.org/abs/2304.12620v7
[73] Chai S R, Jain R K, Teng S Y et al. Ladder fine-tuning approach for SAM integrating complementary network[EB/OL]. http://arxiv.org/abs/2306.12737v1
[74] Zhang J W, Ma K, Kapse S et al. SAM-Path: a segment anything model for semantic segmentation in digital pathology[M]. Medical image computing and computer-assisted intervention- MICCAI 2023 workshops, 14393, 161-170(2023).
[75] Amgad M, Elfandy H, Hussein H et al. Structured crowdsourcing enables convolutional segmentation of histology images[J]. Bioinformatics, 35, 3461-3467(2019).
[76] Graham S, Chen H, Gamper J et al. MILD-Net: minimal information loss dilated network for gland instance segmentation in colon histology images[J]. Medical Image Analysis, 52, 199-211(2019).
[77] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Medical image computing and computer-assisted intervention-MICCAI 2015, 9351, 234-241(2015).
[78] Paranjape J N, Nair N G, Sikder S et al. AdaptiveSAM: towards efficient tuning of SAM for surgical scene segmentation[EB/OL]. http://arxiv.org/abs/2308.03726v1
[79] Feng W J, Zhu L T, Yu L Q. Cheap lunch for medical image segmentation by fine-tuning SAM on few exemplars[EB/OL]. http://arxiv.org/abs/2308.14133v1
[80] En Q, Guo Y H. Exemplar learning for medical image segmentation[EB/OL]. http://arxiv.org/abs/2204.01713v2
[81] Hu J E, Shen Y L, Wallis P et al. LoRA: low-rank adaptation of large language models[EB/OL]. https://arxiv.org/abs/2106.09685
[82] Cheng J L, Ye J, Deng Z Y et al. SAM-Med[EB/OL], 2. http://arxiv.org/abs/2308.16184v1
[83] Zhang K D, Liu D. Customized segment anything model for medical image segmentation[EB/OL]. http://arxiv.org/abs/2304.13785v2
[84] Wang Y N, Chen K, Yuan W M et al. SAMIHS: adaptation of segment anything model for intracranial hemorrhage segmentation[EB/OL]. http://arxiv.org/abs/2311.08190v1
[85] Wei X B, Cao J J, Jin Y Z et al. I-MedSAM: implicit medical image segmentation with segment anything[EB/OL]. http://arxiv.org/abs/2311.17081v1
[86] Gong S Z, Zhong Y, Ma W A et al. 3DSAM-adapter: holistic adaptation of SAM from 2D to 3D for promptable medical image segmentation[EB/OL]. http://arxiv.org/abs/2306.13465v1
[87] Isensee F, Jaeger P F, Kohl S A A et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 18, 203-211(2021).
[88] Chen C, Miao J Z, Wu D F et al. MA-SAM: modality-agnostic SAM adaptation for 3D medical image segmentation[EB/OL]. http://arxiv.org/abs/2309.08842v1
[89] Li C Y, Khanduri P, Qiang Y et al. Auto-prompting SAM for mobile friendly 3D medical image segmentation[EB/OL]. http://arxiv.org/abs/2308.14936v2
[90] Hatamizadeh A, Nath V, Tang Y C et al[M]. Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images, 12962, 272-284(2022).
[91] Li H, Liu H, Hu D W et al. Promise: prompt-driven 3D medical image segmentation using pretrained image foundation models[EB/OL]. http://arxiv.org/abs/2310.19721v3
[92] Bui N T, Hoang D H, Tran M T et al. SAM[EB/OL]. http://arxiv.org/abs/2309.03493v4
[93] Quan Q, Tang F H, Xu Z K et al. Slide-SAM: medical SAM meets sliding window[EB/OL]. https://arxiv.org/abs/2311.10121
[94] Landman B, Xu Z B, Igelsias J et al. Multi-atlas labeling beyond the cranial vault: workshop and challenge[EB/OL]. https://www.synapse.org/Synapse:syn3193805/wiki/
[95] Kavur A E, Gezer N S, Barış M et al. CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation[J]. Medical Image Analysis, 69, 101950(2021).
[96] Wang H Y, Guo S Z, Ye J et al. SAM-Med[EB/OL], 3. http://arxiv.org/abs/2310.15161v2
[97] Du Y X, Bai F, Huang T J et al. SegVol: universal and interactive volumetric medical image segmentation[EB/OL]. http://arxiv.org/abs/2311.13385v3
[98] Lei W H, Wei X, Zhang X F et al. MedLSAM: localize and segment anything model for 3D CT images[EB/OL]. http://arxiv.org/abs/2306.14752v3
[99] Shaharabany T, Dahan A, Giryes R et al. AutoSAM: adapting SAM to medical images by overloading the prompt encoder[EB/OL]. http://arxiv.org/abs/2306.06370v1
[100] Na S Y, Guo Y Z, Jiang F et al. Segment any cell: a SAM-based auto-prompting fine-tuning framework for nuclei segmentation[EB/OL]. http://arxiv.org/abs/2401.13220v1
[101] Pandey S, Chen K F, Dam E B. Comprehensive multimodal segmentation in medical imaging: combining YOLOv8 with SAM and HQ-SAM models[C], 2592-2598(2023).
[102] Jocher G, Chaurasia A, Qiu Jing. YOLO by ultralytics[EB/OL]. https://github.com/ultralytics/ultralytics
[103] Cui C, Deng R N, Liu Q et al. All-in-SAM: from weak annotation to pixel-wise nuclei segmentation with prompt-based finetuning[EB/OL]. http://arxiv.org/abs/2307.00290v2
[104] Dai H X, Ma C, Yan Z L et al. SAMAug: point prompt augmentation for segment anything model[EB/OL]. http://arxiv.org/abs/2307.01187v4
[105] Lin T Y, Maire M, Belongie S et al. Microsoft COCO: common objects in context[EB/OL]. http://arxiv.org/abs/1405.0312v3
[106] Li H, Liu H, Hu D W et al. Assessing test-time variability for interactive 3D medical image segmentation with diverse point prompts[EB/OL]. http://arxiv.org/abs/2311.07806v1
[107] Yue X, Zhao Q, Li J Q et al. Morphology-enhanced CAM-guided SAM for weakly supervised breast lesion segmentation[EB/OL]. http://arxiv.org/abs/2311.11176v1
[108] Yue W X, Zhang J, Hu K et al. SurgicalSAM: efficient class promptable surgical instrument segmentation[EB/OL]. http://arxiv.org/abs/2308.08746v2
[109] Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C], 1050-1059(2016).
[110] Zou K, Yuan X D, Shen X J et al. TBraTS: trusted brain tumor segmentation[M]. Medical image computing and computer assisted intervention-MICCAI 2022, 13438, 503-513(2022).
[111] Li H, Nan Y, Del Ser J et al. Region-based evidential deep learning to quantify uncertainty and improve robustness of brain tumor segmentation[J]. Neural Computing & Applications, 35, 22071-22085(2023).
[112] Deng G Y, Zou K, Ren K et al. SAM-U: multi-box prompts triggered uncertainty estimation for reliable SAM in medical image[M]. Medical image computing and computer-assisted intervention- MICCAI 2023 workshops, 14394, 368-377(2023).
[113] Xu Y S, Tang J Q, Men A D et al. EviPrompt: a training-free evidential prompt generation method for segment anything model in medical images[EB/OL]. http://arxiv.org/abs/2311.06400v1
[114] Zhang Y C, Hu S Y, Jiang C et al. Segment anything model with uncertainty rectification for auto-prompting medical image segmentation[EB/OL]. https://arxiv.org/html/2311.10529v2
[115] Zhang Y C, Cheng Y, Qi Y. SemiSAM: exploring SAM for enhancing semi-supervised medical image segmentation with extremely limited annotations[EB/OL]. http://arxiv.org/abs/2312.06316v1
[116] Chen S Y, Lin L, Cheng P J et al. ASLseg: adapting SAM in the loop for semi-supervised liver tumor segmentation[EB/OL]. http://arxiv.org/abs/2312.07969v1
[117] Wang C L, Li D X, Wang S C et al. SAMMed: a medical image annotation framework based on large vision model[EB/OL]. http://arxiv.org/abs/2307.05617v2
[118] Zhang Y Z, Wang S, Zhou T et al. SQA-SAM: segmentation quality assessment for medical images utilizing the segment anything model[EB/OL]. http://arxiv.org/abs/2312.09899v1
[119] Wang H H, Ye H Z, Xia Y et al. Leveraging SAM for single-source domain generalization in medical image segmentation[EB/OL]. http://arxiv.org/abs/2401.02076v1
[120] Zhu W, Chen Y W, Nie S L et al. SAMMS: multi-modality deep learning with the foundation model for the prediction of cancer patient survival[C]. Turkiye, 3662-3668(2023).
[121] Yin H T, Yue Y Y. Medical image fusion based on semisupervised learning and generative adversarial network[J]. Laser & Optoelectronics Progress, 59, 2215005(2022).
[122] Jiang H Y, Gao M D, Liu Z R et al. GlanceSeg: real-time microaneurysm lesion segmentation with gaze-map-guided foundation model for early detection of diabetic retinopathy[EB/OL]. http://arxiv.org/abs/2311.08075v1
[123] Porwal P, Pachade S, Kokare M et al. IDRiD: diabetic retinopathy-segmentation and grading challenge[J]. Medical Image Analysis, 59, 101561(2020).