• Chinese Journal of Lasers
  • Vol. 49, Issue 12, 1219001 (2022)
Junwei Cheng1, Xueyi Jiang1, Hailong Zhou1, and Jianji Dong1、2、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Optics Valley Laboratory, Wuhan 430074, Hubei, China
  • show less
    DOI: 10.3788/CJL202249.1219001 Cite this Article Set citation alerts
    Junwei Cheng, Xueyi Jiang, Hailong Zhou, Jianji Dong. Advances and Challenges of Optoelectronic Intelligent Computing[J]. Chinese Journal of Lasers, 2022, 49(12): 1219001 Copy Citation Text show less
    References

    [1] Hinton G, Deng L, Yu D et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 29, 82-97(2012).

    [2] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [3] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [4] Grigorescu S, Trasnea B, Cocias T et al. A survey of deep learning techniques for autonomous driving[J]. Journal of Field Robotics, 37, 362-386(2020).

    [5] Moore G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 86, 82-85(1998).

    [6] Kim N S, Austin T, Baauw D et al. Leakage current: Moore’s law meets static power[J]. Computer, 36, 68-75(2003).

    [7] Lundstrom M. Moore’s law forever?[J]. Science, 299, 210-211(2003).

    [8] Mead C. Neuromorphic electronic systems[J]. Proceedings of the IEEE, 78, 1629-1636(1990).

    [9] Benjamin B V, Gao P R, McQuinn E et al. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations[J]. Proceedings of the IEEE, 102, 699-716(2014).

    [10] Pei J, Deng L, Song S et al. Towards artificial general intelligence with hybrid Tianjic chip architecture[J]. Nature, 572, 106-111(2019).

    [11] Merolla P A, Arthur J V, Alvarez-Icaza R et al. A million spiking-neuron integrated circuit with a scalable communication network and interface[J]. Science, 345, 668-673(2014).

    [12] Graves A, Wayne G, Reynolds M et al. Hybrid computing using a neural network with dynamic external memory[J]. Nature, 538, 471-476(2016).

    [13] Davies M, Srinivasa N, Lin T H et al. Loihi: a neuromorphic manycore processor with on-chip learning[J]. IEEE Micro, 38, 82-99(2018).

    [14] Huang C R, Sorger V J, Miscuglio M et al. Prospects and applications of photonic neural networks[J]. Advances in Physics: X, 7, 1981155(2022).

    [15] Miller D A B. Device requirements for optical interconnects to silicon chips[J]. Proceedings of the IEEE, 97, 1166-1185(2009).

    [16] Chen H W, Yu Z M, Zhang T et al. Advances and challenges of optical neural networks[J]. Chinese Journal of Lasers, 47, 0500004(2020).

    [17] Ahmed A H, Sharkia A, Casper B et al. Silicon-photonics microring links for datacenters: challenges and opportunities[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 194-203(2016).

    [18] Fang L, Dai Q H. Computational light field imaging[J]. Acta Optica Sinica, 40, 0111001(2020).

    [19] Zuo C, Feng S J, Zhang X Y et al. Deep learning based computational imaging: status, challenges, and future[J]. Acta Optica Sinica, 40, 0111003(2020).

    [20] Zhou Z P, Xu P F, Dong X W. Computing on silicon photonic platform[J]. Chinese Journal of Lasers, 47, 0600001(2020).

    [21] Li C, Zhang X, Li J W et al. Correction to: the challenges of modern computing and new opportunities for optics[J]. PhotoniX, 2, 23(2021).

    [22] Cheng J W, Zhou H L, Dong J J. Photonic matrix computing: from fundamentals to applications[J]. Nanomaterials, 11, 1683(2021).

    [23] Zhou H L, Dong J J, Cheng J W et al. Photonic matrix multiplication lights up photonic accelerator and beyond[J]. Light: Science & Applications, 11, 30(2022).

    [24] Von B K. Lens design for optical Fourier transform systems[J]. Applied Optics, 10, 2739-2742(1971).

    [25] Athale R A, Collins W C. Optical matrix-matrix multiplier based on outer product decomposition[J]. Applied Optics, 21, 2089-2090(1982).

    [26] Labroille G, Denolle B, Jian P et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion[J]. Optics Express, 22, 15599-15607(2014).

    [27] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).

    [28] Li J X, Mengu D, Luo Y et al. Class-specific differential detection in diffractive optical neural networks improves inference accuracy[J]. Advanced Photonics, 1, 046001(2019).

    [29] Bernstein L, Sludds A, Hamerly R et al. Freely scalable and reconfigurable optical hardware for deep learning[J]. Scientific Reports, 11, 3144(2021).

    [30] Pierangeli D, Marcucci G, Conti C. Large-scale photonic Ising machine by spatial light modulation[J]. Physical Review Letters, 122, 213902(2019).

    [31] Pierangeli D, Marcucci G, Conti C. Adiabatic evolution on a spatial-photonic Ising machine[J]. Optica, 7, 1535-1543(2020).

    [32] Zhou T, Lin X, Wu J et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit[J]. Nature Photonics, 15, 367-373(2021).

    [33] Tang R, Tanemura T, Nakano Y. Integrated reconfigurable unitary optical mode converter using MMI couplers[J]. IEEE Photonics Technology Letters, 29, 971-974(2017).

    [34] Tang R, Tanemura T, Ghosh S et al. Reconfigurable all-optical on-chip MIMO three-mode demultiplexing based on multi-plane light conversion[J]. Optics Letters, 43, 1798-1801(2018).

    [35] Saygin M Y, Kondratyev I V, Dyakonov I V et al. Robust architecture for programmable universal unitaries[J]. Physical Review Letters, 124, 010501(2020).

    [36] Tang R, Tanomura R, Tanemura T et al. Ten-port unitary optical processor on a silicon photonic chip[J]. ACS Photonics, 8, 2074-2080(2021).

    [37] Reck M, Zeilinger A, Bernstein H J et al. Experimental realization of any discrete unitary operator[J]. Physical Review Letters, 73, 58-61(1994).

    [38] Clements W R, Humphreys P C, Metcalf B J et al. Optimal design for universal multiport interferometers[J]. Optica, 3, 1460-1465(2016).

    [39] Shokraneh F, Geoffroy-Gagnon S, Liboiron-Ladouceur O. The diamond mesh, a phase-error- and loss-tolerant field-programmable MZI-based optical processor for optical neural networks[J]. Optics Express, 28, 23495-23508(2020).

    [40] Shen Y, Harris N C, Skirlo S et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 11, 441-446(2017).

    [41] Xu S, Wang J, Shu H et al. Optical coherent dot-product chip for sophisticated deep learning regression[J]. Light: Science & Applications, 10, 221(2021).

    [42] Zhou H L, Zhao Y H, Wei Y X et al. All-in-one silicon photonic polarization processor[J]. Nanophotonics, 8, 2257-2267(2019).

    [43] Zhou H L, Zhao Y H, Xu G X et al. Chip-scale optical matrix computation for PageRank algorithm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 8300910(2020).

    [44] Zhou H L, Zhao Y H, Wang X et al. Self-configuring and reconfigurable silicon photonic signal processor[J]. ACS Photonics, 7, 792-799(2020).

    [45] Roques-Carmes C, Shen Y, Zanoci C et al. Heuristic recurrent algorithms for photonic Ising machines[J]. Nature Communications, 11, 249(2020).

    [46] Prabhu M, Roques-Carmes C, Shen Y C et al. Accelerating recurrent Ising machines in photonic integrated circuits[J]. Optica, 7, 551-558(2020).

    [47] Xu Q F, Soref R. Reconfigurable optical directed-logic circuits using microresonator-based optical switches[J]. Optics Express, 19, 5244-5259(2011).

    [48] Yang L, Ji R Q, Zhang L et al. On-chip CMOS-compatible optical signal processor[J]. Optics Express, 20, 13560-13565(2012).

    [49] Tait A N, Nahmias M A, Shastri B J et al. Broadcast and weight: an integrated network for scalable photonic spike processing[J]. Journal of Lightwave Technology, 32, 4029-4041(2014).

    [50] Tait A N, de Lima T F, Nahmias M A et al. Multi-channel control for microring weight banks[J]. Optics Express, 24, 8895-8906(2016).

    [51] Tait A N, de Lima T F, Zhou E et al. Neuromorphic photonic networks using silicon photonic weight banks[J]. Scientific Reports, 7, 7430(2017).

    [52] Ma P Y, Tait A N, de Lima T F et al. Photonic principal component analysis using an on-chip microring weight bank[J]. Optics Express, 27, 18329-18342(2019).

    [53] Tait A N, de Lima T F, Nahmias M A et al. Silicon photonic modulator neuron[J]. Physical Review Applied, 11, 064043(2019).

    [54] Huang C R, Bilodeau S, Ferreira de Lima T et al. Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits[J]. APL Photonics, 5, 040803(2020).

    [55] Ma P Y, Tait A N, de Lima T F et al. Photonic independent component analysis using an on-chip microring weight bank[J]. Optics Express, 28, 1827-1844(2020).

    [56] Liu M, Zhao Y H, Wang X et al. Widely tunable fractional-order photonic differentiator using a Mach-Zenhder interferometer coupled microring resonator[J]. Optics Express, 25, 33305-33314(2017).

    [57] Zhao Y H, Wang X, Gao D S et al. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Frontiers of Optoelectronics, 12, 148-156(2019).

    [58] Cheng J W, Zhao Y H, Wei Y X et al. On-chip photonic convolutional accelerator for image processing[C], W4C.6(2021).

    [59] Feldmann J, Youngblood N, Wright C D et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 569, 208-214(2019).

    [60] Miscuglio M, Sorger V J. Photonic tensor cores for machine learning[J]. Applied Physics Reviews, 7, 031404(2020).

    [61] Feldmann J, Youngblood N, Karpov M et al. Parallel convolutional processing using an integrated photonic tensor core[J]. Nature, 589, 52-58(2021).

    [62] Xu X, Tan M, Corcoran B et al. 11 TOPS photonic convolutional accelerator for optical neural networks[J]. Nature, 589, 44-51(2021).

    [63] Bangari V, Marquez B A, Miller H et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs)[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7701213(2020).

    [64] Liao K, Chen Y, Yu Z C et al. All-optical computing based on convolutional neural networks[J]. Opto-Electronic Advances, 4, 200060(2021).

    [65] Zang Y B, Chen M H, Yang S G et al. Optoelectronic convolutional neural networks based on time-stretch method[J]. Science China Information Sciences, 64, 1-12(2021).

    [66] Guo X X, Xiang S Y, Zhang Y H et al. Enhanced memory capacity of a neuromorphic reservoir computing system based on a VCSEL with double optical feedbacks[J]. Science China Information Sciences, 63, 160407(2020).

    [67] Rafayelyan M, Dong J, Tan Y Q et al. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction[J]. Physical Review X, 10, 041037(2020).

    [68] Guo X X, Xiang S Y, Qu Y et al. Enhanced prediction performance of a neuromorphic reservoir computing system using a semiconductor nanolaser with double phase conjugate feedbacks[J]. Journal of Lightwave Technology, 39, 129-135(2021).

    [69] Miscuglio M, Mehrabian A, Hu Z B et al. All-optical nonlinear activation function for photonic neural networks[J]. Optical Materials Express, 8, 3851-3863(2018).

    [70] Zuo Y, Li B H, Zhao Y J et al. All-optical neural network with nonlinear activation functions[J]. Optica, 6, 1132-1137(2019).

    [71] Wu B, Li H K, Tong W Y et al. Low-threshold all-optical nonlinear activation function based on a Ge/Si hybrid structure in a microring resonator[J]. Optical Materials Express, 12, 970-980(2022).

    [72] Annoni A, Guglielmi E, Carminati M et al. Unscrambling light-automatically undoing strong mixing between modes[J]. Light: Science & Applications, 6, e17110(2017).

    [73] Miller D A B. Analyzing and generating multimode optical fields using self-configuring networks[J]. Optica, 7, 794-801(2020).

    [74] Qu G Y, Yang W H, Song Q H et al. Reprogrammable meta-hologram for optical encryption[J]. Nature Communications, 11, 5484(2020).

    [75] Goi E, Chen X, Zhang Q et al. Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip[J]. Light: Science & Applications, 10, 40(2021).

    [76] Khan M H, Shen H, Xuan Y et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper[J]. Nature Photonics, 4, 117-122(2010).

    [77] Hughes T W, Minkov M, Shi Y et al. Training of photonic neural networks through in situ backpropagation and gradient measurement[J]. Optica, 5, 864-871(2018).

    [78] Zhou T K, Fang L, Yan T et al. In situ optical backpropagation training of diffractive optical neural networks[J]. Photonics Research, 8, 940-953(2020).

    [79] Jouppi N P, Young C, Patil N et al. In-datacenter performance analysis of a tensor processing unit[C], 1-12(2017).

    [80] NVIDIA[EB/OL]. T4 tensor core datasheet. https://www.nvidia.com/en-us/data-center/tesla-t4/

    [81] HUAWEI[EB/OL]. A310 AI processor datasheet. https://e.huawei.com/cn/products/cloud-computing-dc/atlas/ascend-310

    [82] HUAWEI[EB/OL]. A910 AI processor datasheet. https://e.huawei.com/cn/products/cloud-computing-dc/atlas/ascend-910

    [83] Mekis A, Gloeckner S, Masini G et al. A grating-coupler-enabled CMOS photonics platform[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 597-608(2011).

    [84] Baets R, Subramanian A Z, Clemmen S et al. Silicon photonics: silicon nitride versus silicon-on-insulator[C](2016).

    [85] Demkov A A, Bajaj C, Ekerdt J G et al. Materials for emergent silicon-integrated optical computing[J]. Journal of Applied Physics, 130, 070907(2021).

    [86] Midolo L, Schliesser A, Fiore A. Nano-opto-electro-mechanical systems[J]. Nature Nanotechnology, 13, 11-18(2018).

    [87] Yan S Q, Zhu X L, Frandsen L H et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides[J]. Nature Communications, 8, 14411(2017).

    [88] Yan S Q, Chen H, Gao S Q et al. Efficient thermal tuning employing metallic microheater with slow-light effect[J]. IEEE Photonics Technology Letters, 30, 1151-1154(2018).

    [89] Wei Y X, Cheng J W, Wang Y L et al[EB/OL]. Fast-response silicon photonic microheater induced by parity-time symmetry breaking. https://arxiv.org/abs/2107.09444

    Junwei Cheng, Xueyi Jiang, Hailong Zhou, Jianji Dong. Advances and Challenges of Optoelectronic Intelligent Computing[J]. Chinese Journal of Lasers, 2022, 49(12): 1219001
    Download Citation