• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 19, Issue 2, 193 (2021)
ZHANG Zehan1、2、*, JIANG Tao1、2, ZHAN Zhiqiang1、2, WANG Xuemin1、2, LUO Jiawen1、2, PENG Liping1、2, FAN Long1、2, XIAO Tingting1、2, and WU Weidong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11805/tkyda2019390 Cite this Article
    ZHANG Zehan, JIANG Tao, ZHAN Zhiqiang, WANG Xuemin, LUO Jiawen, PENG Liping, FAN Long, XIAO Tingting, WU Weidong. The progress of Quantum Cascade Lasers thermal management[J]. Journal of Terahertz Science and Electronic Information Technology , 2021, 19(2): 193 Copy Citation Text show less
    References

    [1] FAIST J,CAPASSO F,SIVCO D,et al. Quantum cascade laser[J]. Science, 1994,264(5158):553.

    [3] YIN W,LU Q Y,LIU W F,et al. Porous waveguide facilitated low divergence quantum cascade laser[J]. Journal of Semiconductors, 2011,6(32):751-754.

    [7] SILVERMAN I,ARENSHTAM A,KIJEL D,et al.High heat flux accelerator targets cooling with liquid-metal jet impingement[J]. Nuclear Instruments & Methods in Physics Research, 2005,241(1-4):1009-1013.

    [9] HOFSTETTER D,BECK M,AELLEN T,et al. High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm[J]. Applied Physics Letters, 2001,78(4):396-398.

    [10] FAIST J,HOFSTETTER D,BECK M,et al. Bound-to-continuum and two-phonon resonance,quantum-cascade lasers for high duty cycle,high-temperature operation[J]. IEEE Journal of Quantum Electronics, 2002,38(6):533-546.

    [11] PARATHOEN C,PLATZ C,MOUREAU G,et al. Growth and optical characterizations of InAs quantum dots on InP substrate: towards a 1.55 μm quantum dot laser[J]. Journal of Crystal Growth, 2003,251(1-4):230-235.

    [12] JAE S Y,STEVEN S,MANIJEH R,et al. High-performance continuous-wave operation of λ~4.6 μm quantum-cascade lasers above room temperature[J]. IEEE Journal of Quantum Electronics, 2008,44(8):747-754.

    [13] EVANS A,DARVISH S R,SLIVKEN S,et al. Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency[J]. Applied Physics Letters, 2007,91(7):553.

    [14] SCHLEUNING D,GRIFFIN M,JAMES P,et al. Robust hard-solder packaging of conduction cooled laser diode bars[C]// Conference on High-Power Diode Laser Technology and Applications V. San Jose,CA,USA:[s.n.], 2007:645604-1-11.

    [17] ZHANG Y G,HE Y J,LI A G. Transient thermal analysis of InAlAs/InGaAs/InP mid-infrared quantum cascade lasers[J]. Chinese Physics Letters, 2003,20(5):678-681.

    [18] CHAPARALA S C,XIE F,CANEAU C,et al. Design guidelines for efficient thermal management of mid-infrared quantum cascade lasers[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology, 2011,1(12):1975-1982.

    [19] CAO J C. Interband impact ionization and nonlinear absorption of terahertz radiations in semiconductor heterostructures[J]. Physical Review Letters, 2003,91(23):237401.

    [20] LIU H C,SONG C Y,WASILEWSKI Z R,et al. Coupled electron-phonon modes in optically pumped resonant intersubband lasers[J]. Physical Review Letters, 2003,90(7):077402.

    [22] BELKIN M A,CAPASSO F,BELYANIN A,et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation[J]. Nature Photonics, 2007,1(5):288-292.

    [23] KOHLER R,TREDICUCCI A,BELTRAM F,et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002,417 (6885):156-159.

    [24] SILVWEMAN I,YARIN A,REZNIK S,et al. High heat-flux accelerator targets:cooling with liquid metal jet impingement[J]. International Journal of Heat Mass Transfer, 2006,49(17):2782-2792.

    [25] KHALATPOUR A,PAULSEN A K,DEIMERT C,et al. High-power portable terahertz laser systems[J]. Nature Photonics, 2021,15(1):16-20.

    [26] WILLIAMS B S. Terahertz quantum-cascade-lasers[J]. Nature Photonics, 2007,1(9):517-525.

    [27] KUMAR S. Recent progress in terahertz quantum cascade lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011,17(1):38-47.

    [28] KUMAR S,CHAN C,QING H,et al. A 1.8 THz quantum cascade laser operating significantly above the temperature of hω/kB[J]. Nature Physics, 2011,7(2):166-171.

    [29] WADE A,FEDOROV G,SMIRNOV D,et al. Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K[J]. Nature Photonics, 2009,3(1):41-45.

    [30] LI H,CAO J C,HAN Y J,et al. Temperature profile modelling and experimental investigation of thermal resistance of terahertz quantum-cascade lasers[J]. Journal of Physics D-Applied Physics, 2009,42(20):205102.

    [31] HOWARD S S,LIU Z,WASSERMAN D,et al. High-performance quantum cascade lasers:optimized design through waveguide and thermal modeling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007,13(5):1054-1064.

    [32] LEE H K,CHUNG K S,YI J S,et al. Thermal analysis of buried heterostructure quantum cascade lasers for long-wavelength infrared emission using 2D anisotropic heat-dissipation model[J]. Physica Status Solidi, 2010,206(2):356-362.

    ZHANG Zehan, JIANG Tao, ZHAN Zhiqiang, WANG Xuemin, LUO Jiawen, PENG Liping, FAN Long, XIAO Tingting, WU Weidong. The progress of Quantum Cascade Lasers thermal management[J]. Journal of Terahertz Science and Electronic Information Technology , 2021, 19(2): 193
    Download Citation