• Chinese Journal of Lasers
  • Vol. 42, Issue 3, 303012 (2015)
Jia Nana1、2、*, Deng Chuanlu1、2, Pang Fufei1、2, Gu Xin1、2, and Wang Tingyun1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201542.0303012 Cite this Article Set citation alerts
    Jia Nana, Deng Chuanlu, Pang Fufei, Gu Xin, Wang Tingyun. Research on Excimer Laser Etching Technology for Achieving Optical Waveguide End Face[J]. Chinese Journal of Lasers, 2015, 42(3): 303012 Copy Citation Text show less
    References

    [1] Schmidtke K, Flens F, Worrall A, et al.. 960 Gb/s optical backplane ecosystem using embedded polymer waveguides and demonstration in a 12G SAS storage array (June 2013)[J]. J Lightwave Technol, 2013, 31(24): 3970-3975.

    [2] Taubenblatt M A. Optical interconnects for high-performance computing[J]. J Lightwave Technol, 2012, 30(4): 448-457.

    [3] Li Rongling, Shang Huiliang, Lei Yu, et al.. Design research of key enabling technologies for high-speed visible-light communication[J]. Laser & Optoelectronics Progress, 2013, 50(5): 050003.

    [4] Hou Peipei, Zhi Yanan, Sun Jianfeng, et al.. Crossbar optical switching network[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010003.

    [5] Zhang X, Hosseini A, Lin X, et al.. Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and boardlevel optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 3401115.

    [6] Luo F, Cao M, Zhou X, et al.. 3D optical interconnect mesh network for on-board parallel multiprocessor system based on EOPCB [C]. SPIE, 2007, 6795: 67954V.

    [7] Jin W, Chiang K S, Lor K P, et al.. Industry compatible embossing process for the fabrication of waveguide-embedded optical printed circuit boards[J]. J Lightwave Technol, 2013, 31(24): 4045-4050.

    [8] Bamiedakis N, Penty R V, White I H. Compact multimode polymer waveguide bends for board-level optical interconnects[J]. J Lightwave Technol, 2013, 31(14): 2370-2375.

    [9] Doany F E, Schow C L, Baks C W, et al.. 160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOSbased transceivers[J]. IEEE Transactions on Advanced Packaging, 2009, 32(2): 345-359.

    [10] Tan M R, Rosenberg P K, Mathai S, et al.. Low cost, injection molded 120 Gbps optical backplane[C]. Optical Fiber Communication Conference, Optical Society of America, 2011. PDPA4.

    [11] Pitwon R C A, Hopkins K, Milward D, et al.. Passive assembly of parallel optical devices onto polymer-based optical printed circuit boards[J]. Circuit World, 2010, 36(4): 3-11.

    [12] Baghsiahi H, Wang K, Kandulski W, et al.. Optical waveguide end facet roughness and optical coupling loss[J]. J Lightwave Technol, 2013, 31(16): 2959-2968.

    [13] Q Xia, M Immonen, J Wu. Optical backplane demonstrator with 10 Gbps video transmission link on printed circuit board using optical waveguides[C]. International Microsystem Packaging Assembly and Circuits Technology Conference, 2013.

    [14] Papakonstantinou I, Selviah D R, Pitwon R C A, et al.. Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs[J]. IEEE Transactions on Advanced Packaging, 2008, 31(3): 502-511.

    [15] MICRO·CHEM. Developmental Products[OL]. http://www.microchem.com/Prod-LightLink.htm.[2014-12-19].

    [16] Zakariyah S S. Laser ablation for polymer waveguide fabrication[J]. Micromachining Techniques for Fabrication of Micro and Nano Structures, 2012, 6(1): 109-130.

    [17] Li Yu. The reasonable choice of sample length and evaluation length in roughness measurement[J]. Dongfang Electrical Machine, 2007, 35(4): 63-65.

    [18] Li Bokui. 3D roughness parameter arithmetic average deviation and root mean square deviation of law research[J]. Tool Engineering, 2008, 42(9): 107-110.

    CLP Journals

    [1] Deng Chuanlu, Song Zhiqiang, Pang Fufei, Wang Jianhui, Wang Tingyun. Research on Fabrication and Vertical Coupling of 45° Micromirror with Laser Stepped Ablation Method[J]. Chinese Journal of Lasers, 2016, 43(11): 1101003

    [2] Fan Yuanyuan, Zhou Yi, Liu Guangyi, Song Xingliang, Shan Yaoying, Wang Qian, Zhao Jiangshan. Compound Cavity ArF Excimer Laser with High Efficiency[J]. Chinese Journal of Lasers, 2016, 43(2): 202001

    [3] Yang Wei, Mao Jiubing, Feng Xiaojuan. Research Status and Developing Tread for Waveguide-Based Board-Level Optical Interconnects Technology[J]. Laser & Optoelectronics Progress, 2016, 53(6): 60004

    [4] Xu Xiao, Ma Lin, Zhang Wenjia, Du Jiangbing, He Zuyuan. Fabrication and Performance Evaluation of Polymer Waveguides for Optical Printed Circuit Board Applications[J]. Acta Optica Sinica, 2016, 36(6): 613001

    [5] Zhang Hongwei, Ren Ni, Xue Hongtao, Tang Fuling, Yan Xiaodong, Lu Wenjiang, Liu Xiaoli. Temperature Distribution for Laser Etching of Metal Thin Films on Polyimide Substrate[J]. Chinese Journal of Lasers, 2016, 43(5): 503009

    Jia Nana, Deng Chuanlu, Pang Fufei, Gu Xin, Wang Tingyun. Research on Excimer Laser Etching Technology for Achieving Optical Waveguide End Face[J]. Chinese Journal of Lasers, 2015, 42(3): 303012
    Download Citation