• Frontiers of Optoelectronics
  • Vol. 9, Issue 4, 592 (2016)
Heng ZHAO, Bo LI, Wenjin WANG, Yi HU, and Youqing WANG*
Author Affiliations
  • School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, china
  • show less
    DOI: 10.1007/s12200-015-0523-x Cite this Article
    Heng ZHAO, Bo LI, Wenjin WANG, Yi HU, Youqing WANG. Effect of excitation frequency on characteristics of mixture discharge in fast-axial-flow radio frequency-excited carbon dioxide laser[J]. Frontiers of Optoelectronics, 2016, 9(4): 592 Copy Citation Text show less
    References

    [1] Sublemontier O, Lacour F, Leconte Y, Herlin-Boime N, Reynaud C. CO2 laser-driven pyrolysis synthesis of silicon nanocrystals and applications. Journal of Alloys and Compounds, 2009, 483(1–2): 499–502

    [2] Comparat D. A study of molecular cooling via Sisyphus processes. Physical Review A, 2014, 89(4): 043410

    [3] Niziev V G, Grishaev R V, Panchenko V Y. Multipass modes in an open resonator. Laser Physics, 2015, 25(2): 023001

    [4] Zhao J, Li B, Zhao H, Wang W, Hu Y, Liu S, Wang Y. Generation of azimuthally polarized beams in fast axial .ow CO2 laser with hybrid circular subwavelength grating mirror. Applied Optics, 2014, 53 (17): 3706–3711

    [5] Maiorov S A, Kodanova S K, Dosbolayev M K, Ramazanov T S, Golyatina R I, Bastykova N K, Utegenov A U. The role of gas composition in plasma-dust structures in RF discharge. Physics of Plasmas, 2015, 22(3): 033705

    [6] Voloshin D, Kovalev A, Mankelevich, Proshina O, Rakhimova T, Vasilieva A. Evaluation of plasma density in RF CCP discharges from ion current to Langmuir probe: experiment and numerical simulation. Evaluation Physical Journal D, 2015, 69(23): 1–9

    [7] Chen F F, Evans J D, Zawalski W. Calibration of Langmuir probes against microwaves and plasma oscillation probes. Plasma Sources Science & Technology, 2012, 21(5): 055002

    [8] Turner M M, Derzsi A, Donko Z, Eremin D, Kelly S J, La.eur T, Mussenbrock T. Simulation benchmarks for low-pressure plasmas: capacitive discharges. Physics of Plasmas, 2013, 20(1): 013507

    [9] Wester R, Seiwert S. Numerical modelling of RF excited CO2 laser discharges. Journal of Physics D, Applied Physics, 1991, 24(8): 1371–1375

    [10] Wang Y, Chen Q, Xu Q Y. Numerical modeling of RF-excited plasma in coaxial CO2 lasers. Optics Communications, 1999, 160(1–3): 86–91

    [11] Zhang X, Wang X, Li G, He F, Jiao J, Lu Y. Theoretical research of α-RF discharge in slab oxygen iodine lasers. Proceedings of High-Power Lasers and Applications IV, 2007, 6823: 68230Q

    [12] He D, Hall D R. Frequency dependence in RF discharge excited waveguide CO2 lasers. IEEE Journal of Quantum Electronics, 1984, 20(5): 509–514

    [13] Vidaud P, He D, Hall D R. High ef.ciency RF excited CO2 laser. Optics Communications, 1985, 56(3): 185–190

    [14] Vidaud P, Hall D R. Effect of xenon on the electron temperatures of RF discharge CO2 laser gas mixtures. Journal of Applied Physics, 1985, 57(5): 1757–1758

    [15] Lymberopoulos D P, Economou D J. Fluid simulations of glow discharges: effect of metastable atoms in argon. Journal of Applied Physics, 1993, 73(8): 3668–3679

    [16] Liu X M, Song Y H, Wang Y N. Driving frequency effects on the mode transition in capacitively coupled argon discharges. Chinese Physics B, 2011, 20(6): 065205

    [17] Schroder K. Theoretical modelling of RF-excited laser plasmas. Proceedings of the Society for Photo-Instrumentation Engineers, 1989, 1031: 90–97

    [18] Shang W, Wang D, Zhang Y. Radio frequency atmospheric pressure glow discharge in α and γ modes between two coaxial electrodes. Physics of Plasmas, 2008, 15(9): 093003

    [19] Raizer Y P, Shneider M N, Yatsenko N A. Radio-Frequency Capacitive Discharges. Florida: CRC, 1995, 247–258

    [20] Lowke J J, Phelps A V, Irwin B W. Predicted electron transport coef.cients and operating characteristics of CO2-N2-He laser mixtures. Journal of Applied Physics, 1973, 44(10): 4664–4671

    [21] Schulz G J. Vibrational excitation of N2, CO, and H2 by electron impact. Physical Review, 1964, 135(4A): A988–A994

    [22] Newman L A, Detemple T A. Electron transport parameters and excitation rates in N2. Journal of Applied Physics, 1976, 47(5): 1912–1915

    [23] Cosby P C. Electron-impact dissociation of nitrogen. Journal of Chemical Physics, 1993, 98(12): 9544–9553

    [24] Surendra M. Radiofrequency discharge benchmark model compar-ison. Plasma Sources Science & Technology, 1995, 4(1): 56–73

    [25] Bhagat M S, Biswas A K, Rana L B, Kukreja L M. Impedance matching in RF excited fast axial .ow CO2 laser: the role of the capacitance due to laser head. Optics & Laser Technology, 2012, 44 (7): 2217–2222

    [26] He D, Baker C J, Hall D R. Discharge striations in RF excited waveguide lasers. Journal of Applied Physics, 1984, 55(11): 4120– 4122

    [27] Yang X, Moravej M, Nowling G R, Babayan S E, Panelon J, Chang J P, Hicks R F. Comparison of an atmospheric pressure, radio-frequency discharge operating in the α and γ modes. Plasma Sources Science & Technology, 2005, 14(2): 314–320

    [28] MoonSY,RheeJK,KimDB,ChoeW. α, γ, and normal, abnormal glow discharge modes in radio-frequency capacitively coupled discharges at atmospheric pressure. Physics of Plasmas, 2006, 13(3): 033502

    [29] Liu D, Iza F, Kong M G. Evolution of the light emission pro.le in radio-frequency atmospheric pressure glow discharges. IEEE Transactions on Plasma Science, 2008, 36(4): 952–953

    [30] Vitruck P P, Baker H J, Hall D R. The characteristics and stability of high power transverse radio frequency discharges for waveguide CO2 slab laser excitation. Journal of Physics D, Applied Physics, 1992, 25: 1767

    [31] Zhang Y, Cui S. Frequency effects on the electron density and α–γ mode transition in atmospheric radio frequency discharges. Physics of Plasmas, 2011, 18(8): 083509

    Heng ZHAO, Bo LI, Wenjin WANG, Yi HU, Youqing WANG. Effect of excitation frequency on characteristics of mixture discharge in fast-axial-flow radio frequency-excited carbon dioxide laser[J]. Frontiers of Optoelectronics, 2016, 9(4): 592
    Download Citation