• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 11, 110601 (2023)
Shichao CHEN1,2, Rui LI1, Xiandi ZUO1, Haijun LIU1,3..., Kaicheng YU1,2, Maosong CHENG1,2,* and Zhimin DAI1,2,**|Show fewer author(s)
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3ShanghaiTech University, Shanghai 201210, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.110601 Cite this Article
    Shichao CHEN, Rui LI, Xiandi ZUO, Haijun LIU, Kaicheng YU, Maosong CHENG, Zhimin DAI. Development and validation of real-time modeling and simulation platform for molten salt reactor based on EPICS framework[J]. NUCLEAR TECHNIQUES, 2023, 46(11): 110601 Copy Citation Text show less
    EPICS architecture diagram
    Fig. 1. EPICS architecture diagram
    Software architecture of ThorTypography
    Fig. 2. Software architecture of ThorTypography
    Flowchart of RELAP5-TMSR-RT real-time calculation
    Fig. 3. Flowchart of RELAP5-TMSR-RT real-time calculation
    Flowchart of RELAP5-TMSR-RT simulation control
    Fig. 4. Flowchart of RELAP5-TMSR-RT simulation control
    Human-machine interface of MSRE power control
    Fig. 5. Human-machine interface of MSRE power control
    Node diagram of MSRE
    Fig. 6. Node diagram of MSRE
    Control and protection logic of pump start-up and coast-down
    Fig. 7. Control and protection logic of pump start-up and coast-down
    Variation of reactivity inserted during protected pump start-up experiment
    Fig. 8. Variation of reactivity inserted during protected pump start-up experiment
    Variation of reactivity inserted during protected pump coast-down experiment
    Fig. 9. Variation of reactivity inserted during protected pump coast-down experiment
    Variation of core power during the natural circulation experiment
    Fig. 10. Variation of core power during the natural circulation experiment
    Power response after a 2.48×10-4 step insertion of reactivity at 1 MW
    Fig. 11. Power response after a 2.48×10-4 step insertion of reactivity at 1 MW
    Power response after a 1.9×10-4 step insertion of reactivity at 5 MW
    Fig. 12. Power response after a 1.9×10-4 step insertion of reactivity at 5 MW
    Power response after a 1.39×10-4 step insertion of reactivity at 8 MW
    Fig. 13. Power response after a 1.39×10-4 step insertion of reactivity at 8 MW
    参数Parameter群组GroupU-233U-235

    衰变常数

    Decay constant / s-1

    1

    2

    3

    4

    5

    6

    0.012 6

    0.033 7

    0.139

    0.325

    1.13

    2.50

    0.012 4

    0.030 5

    0.111

    0.301

    1.14

    3.01

    缓发中子份额

    Delayed-neutron fraction /10-5

    1

    2

    3

    4

    5

    6

    22.8

    78.8

    66.4

    73.6

    13.6

    8.8

    22.3

    145.7

    130.7

    262.8

    76.6

    28.0

    平均中子代时间Mean neutron life time / s0.000 400.000 24
    熔盐温度反馈系数Molten salt reactivity coefficient / 10-5 K-1-11.03-8.71
    石墨温度反馈系数Graphite reactivity coefficient / 10-5 K-1-5.814-6.66
    Table 1. Neutronics parameters for U-233 and U-235
    参数Parameter值Value

    堆芯Reactor core

    热功率Thermal power / MW

    燃料盐质量流量Fuel salt mass flow / kg∙s-1

    堆芯高度Core height / m

    水力直径Hydraulic diameter / m

    总流通面积Total flow area / m2

    总换热面积Total heat transfer area / m2

    进/出口温度Inlet /Outlet temperature / K

    8

    168

    1.63

    0.015 8

    0.036 4

    21.55

    908/936

    主换热器 Primary heat exchanger

    壳侧Shell side

    总流通面积Total flow area / m2

    水力直径Hydraulic diameter / m

    进/出口温度Inlet /outlet temperature / K

    管侧Tube side

    冷却盐质量流量Coolant salt mass flow / kg∙s-1

    水力直径Hydraulic diameter / m

    总流通面积Total flow area / m2

    进/出口温度Inlet /Outlet temperature / K

    总换热面积 Total heat transfer area / m2

    0.09

    0.025

    936/908

    105

    0.015

    0.015

    825/866

    26

    空气散热器 Air radiator

    空气质量流量Air mass flow rate / kg∙s-1

    总换热面积 Total heat transfer area / m2

    进/出口温度Inlet /Outlet temperature / K

    75

    65.5

    300/411

    Table 2. Main design parameters of MSRE

    实验基准题

    Experiment benchmark

    总的物理问题时间

    Total physical

    problem time / s

    总的实际仿真时间

    Total actual

    simulation time / s

    最小等待时间

    Minimum waiting

    time / s

    最大等待时间

    Maximum waiting

    time / s

    启泵瞬态工况Pump start-up transient50500.031 20.093 7
    停泵瞬态工况Pump coast-down transient70700.078 10.093 6

    自然循环瞬态工况

    Natural circulation transient

    20 00020 0000.015 60.093 8

    1 MW时反应性引入瞬态工况

    Reactivity introduced transient at 1 MW

    4004000.015 70.093 7

    5 MW时反应性引入瞬态工况

    Reactivity introduced transient at 5 MW

    4004000.015 60.093 7

    8 MW时反应性引入瞬态工况

    Reactivity introduced transient at 8 MW

    1101100.015 60.093 8
    Table 3. Test results of real-time simulation
    Shichao CHEN, Rui LI, Xiandi ZUO, Haijun LIU, Kaicheng YU, Maosong CHENG, Zhimin DAI. Development and validation of real-time modeling and simulation platform for molten salt reactor based on EPICS framework[J]. NUCLEAR TECHNIQUES, 2023, 46(11): 110601
    Download Citation