• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 4, 1454 (2022)
LI Hang*, LIAO Jianguo, MA Tingting, and FENG Jinlun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    LI Hang, LIAO Jianguo, MA Tingting, FENG Jinlun. Research Progress on Modification of Calcium-Phosphorus Self-Curing Material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1454 Copy Citation Text show less
    References

    [1] YOUSEFI A M. A review of calcium phosphate cements and acrylic bone cements as injectable materials for bone repair and implant fixation[J]. Journal of Applied Biomaterials & Functional Materials, 2019, 17(4): 2280800019872594.

    [2] HOESS A, LPEZ A, ENGQVIST H, et al. Comparison of a quasi-dynamic and a static extraction method for the cytotoxic evaluation of acrylic bone cements[J]. Materials Science and Engineering: C, 2016, 62: 274-282.

    [3] LEWIS G. Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: a review[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2017, 105(5): 1260-1284.

    [4] XU D R, SONG W L, ZHANG J, et al. Osteogenic effect of polymethyl methacrylate bone cement with surface modification of lactoferrin[J]. Journal of Bioscience and Bioengineering, 2021, 132(2): 132-139.

    [5] BOHNER M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements[J]. Injury, 2000, 31: D37-D47.

    [6] SARKAR M R, WACHTER N, PATKA P, et al. First histological observations on the incorporation of a novel calcium phosphate bone substitute material in human cancellous bone[J]. Journal of Biomedical Materials Research, 2001, 58(3): 329-334.

    [7] OOMS E M, WOLKE J G C, VAN DE HEUVEL M T, et al. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone[J]. Biomaterials, 2003, 24(6): 989-1000.

    [8] PALMER I, NELSON J, SCHATTON W, et al. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study[J]. Journal of Materials Science Materials in Medicine, 2016, 27(12): 191.

    [10] GISEP A, KUGLER S, WAHL D, et al. Mechanical characterisation of a bone defect model filled with ceramic cements[J]. Journal of Materials Science Materials in Medicine, 2004, 15(10): 1065-1071.

    [11] ROY A, JHUNJHUNWALA S, BAYER E, et al. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: a viable tunable drug delivery system[J]. Materials Science and Engineering: C, 2016, 59: 92-101.

    [12] LIU J Q, LI J Y, YE J D, et al. Setting behavior, mechanical property and biocompatibility of anti-washout wollastonite/calcium phosphate composite cement[J]. Ceramics International, 2016, 42(12): 13670-13681.

    [13] ZHANG J, WU H E, HE F P, et al. Concentration-dependent osteogenic and angiogenic biological performances of calcium phosphate cement modified with copper ions[J]. Materials Science and Engineering: C, 2019, 99: 1199-1212.

    [14] XIA Y, GUO Y, YANG Z K, et al. Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/β-catenin signaling[J]. Materials Science and Engineering: C, 2019, 104: 109955.

    [15] LIN Z F, CAO Y N, ZOU J M, et al. Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement[J]. Materials Science and Engineering: C, 2020, 114: 111032.

    [16] ZHANG Q C, LEI Z L, PENG M X, et al. Enhancement of mechanical and biological properties of calcium phosphate bone cement by incorporating bacterial cellulose[J]. Materials Technology, 2019, 34(13): 800-806.

    [17] LI G D, ZHANG K L, PEI Z J, et al. Basalt fibre reinforced calcium phosphate cement with enhanced toughness[J]. Materials Technology, 2020, 35(3): 152-158.

    [18] PETRE D G, NADAR R, TU Y F, et al. Thermoresponsive brushes facilitate effective reinforcement of calcium phosphate cements[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26690-26703.

    [20] WANG S, SUN X N, WANG Y P, et al. Properties of reduced graphene/carbon nanotubes reinforced calcium phosphate bone cement in a microwave environment[J]. Journal of Materials Science: Materials in Medicine, 2019, 30(3): 37.

    [21] RAJEH M A, DIAZ J J H, FACCA S, et al. Treatment of hand enchondroma with injectable calcium phosphate cement: a series of eight cases[J]. European Journal of Orthopaedic Surgery & Traumatology: Orthopedie Traumatologie, 2017, 27(2): 251-254.

    [22] BOHNER M, BAROUD G. Injectability of calcium phosphate pastes[J]. Biomaterials, 2005, 26(13): 1553-1563.

    [23] HURLE K, WEICHHOLD J, BRUECKNER M, et al. Hydration mechanism of a calcium phosphate cement modified with phytic acid[J]. Acta Biomaterialia, 2018, 80: 378-389.

    [24] NEZAFATI N, FAROKHI M, HEYDARI M, et al. In vitro bioactivity and cytocompatablity of an injectable calcium phosphate cement/silanated gelatin microsphere composite bone cement[J]. Composites Part B: Engineering, 2019, 175: 107146.

    [25] AMIRIAN J, MAKKAR P, LEE G H, et al. Incorporation of alginate-hyaluronic acid microbeads in injectable calcium phosphate cement for improved bone regeneration[J]. Materials Letters, 2020, 272: 127830.

    [26] KREBS J, AEBLI N, GOSS B G, et al. Cardiovascular changes after pulmonary embolism from injecting calcium phosphate cement[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2007, 82(2): 526-532.

    [27] AN J, WOLKE J G C, JANSEN J A, et al. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements[J]. Journal of Materials Science Materials in Medicine, 2016, 27(3): 58.

    [28] QIAN G W, LI X M, HE F P, et al. Improvement of anti-washout property of calcium phosphate cement by addition of konjac glucomannan and guar gum[J]. Journal of Materials Science: Materials in Medicine, 2018, 29(12): 183.

    [29] LEE H J, KIM B, PADALHIN A R, et al. Incorporation of chitosan-alginate complex into injectable calcium phosphate cement system as a bone graft material[J]. Materials Science and Engineering: C, 2019, 94: 385-392.

    [30] LODOSO-TORRECILLA I, STUMPEL F, JANSEN J A, et al. Early-stage macroporosity enhancement in calcium phosphate cements by inclusion of poly(N-vinylpyrrolidone) particles as a porogen[J]. Materials Today Communications, 2020, 23: 100901.

    [31] LIU H L, ZHANG Z Y, GAO C X, et al. Enhancing effects of radiopaque agent BaSO4 on mechanical and biocompatibility properties of injectable calcium phosphate composite cement[J]. Materials Science and Engineering: C, 2020, 116: 110904.

    [32] LE FERREC M, MELLIER C, BOUKHECHBA F, et al. Design and properties of a novel radiopaque injectable apatitic calcium phosphate cement, suitable for image-guided implantation[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2018, 106(8): 2786-2795.

    [33] WU T T, YANG S E, SHI H S, et al. Preparation and cytocompatibility of a novel bismuth aluminate/calcium phosphate cement with high radiopacity[J]. Journal of Materials Science Materials in Medicine, 2018, 29(9): 149.

    [34] FILLINGHAM Y, JACOBS J. Bone grafts and their substitutes[J]. The Bone & Joint Journal, 2016, 98-B(1 Suppl A): 6-9.

    [35] SENGUPTA S, PARK S H, PATEL A, et al. Hypoxia and amino acid supplementation synergistically promote the osteogenesis of human mesenchymal stem cells on silk protein scaffolds[J]. Tissue Engineering Part A, 2010, 16(12): 3623-3634.

    [36] SHI H S, YE X L, HE F P, et al. Improving osteogenesis of calcium phosphate bone cement by incorporating with lysine: an in vitro study[J]. Colloids and Surfaces B: Biointerfaces, 2019, 177: 462-469.

    [37] TUO Y H, GUO X L, ZHANG X X, et al. The biological effects and mechanisms of calcitonin gene-related peptide on human endothelial cell[J]. Journal of Receptors and Signal Transduction, 2013, 33(2): 114-123.

    [38] LV T C, LIANG W, LI L, et al. Novel calcitonin gene-related peptide/chitosan-strontium-calcium phosphate cement: enhanced proliferation of human umbilical vein endothelial cells in vitro[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2019, 107(1): 19-28.

    [39] FONG L, TAN K, TRAN C, et al. Interaction of dietary zinc and intracellular binding protein metallothionein in postnatal bone growth[J]. Bone, 2009, 44(6): 1151-1162.

    [40] LI H, CHANG J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect[J]. Acta Biomaterialia, 2013, 9(6): 6981-6991.

    [41] HORIUCHI S, HIASA M, YASUE A, et al. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29: 151-160.

    [42] XIONG K, ZHANG J, ZHU Y Y, et al. Zinc doping induced differences in the surface composition, surface morphology and osteogenesis performance of the calcium phosphate cement hydration products[J]. Materials Science and Engineering: C, 2019, 105: 110065.

    [43] QIAN G W, LU T L, ZHANG J, et al. Promoting bone regeneration of calcium phosphate cement by addition of PLGA microspheres and zinc silicate via synergistic effect of in situ pore generation, bioactive ion stimulation and macrophage immunomodulation[J]. Applied Materials Today, 2020, 19: 100615.

    [44] LIANG W W, GAO M, LOU J S, et al. Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration[J]. Journal of Materials Chemistry B, 2020, 8(15): 3038-3049.

    [45] BURGHARDT I, LTHEN F, PRINZ C, et al. A dual function of copper in designing regenerative implants[J]. Biomaterials, 2015, 44: 36-44.

    [46] BONNELYE E, CHABADEL A, SALTEL F, et al. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro[J]. Bone, 2008, 42(1): 129-138.

    [47] SCHUMACHER M, LODE A, HELTH A, et al. A novel strontium(Ⅱ)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro[J]. Acta Biomaterialia, 2013, 9(12): 9547-9557.

    [48] SCHUMACHER M, WAGNER A S, KOKESCH-HIMMELREICH J, et al. Strontium substitution in apatitic CaP cements effectively attenuates osteoclastic resorption but does not inhibit osteoclastogenesis[J]. Acta Biomaterialia, 2016, 37: 184-194.

    [49] LODE A, HEISS C, KNAPP G, et al. Strontium-modified premixed calcium phosphate cements for the therapy of osteoporotic bone defects[J]. Acta Biomaterialia, 2018, 65: 475-485.

    [50] DEL VALLE S, MIO N, MUOZ F, et al. In vivo evaluation of an injectable macroporous calcium phosphate cement[J]. Journal of Materials Science Materials in Medicine, 2007, 18(2): 353-361.

    [51] LODOSO-TORRECILLA I, VAN DEN BEUCKEN J J J P, JANSEN J A. Calcium phosphate cements: optimization toward biodegradability[J]. Acta Biomaterialia, 2021, 119: 1-12.

    [52] YAMAMOTO S, MATSUSHIMA Y, KANAYAMA Y, et al. Effect of the up-front heat treatment of gelatin particles dispersed in calcium phosphate cements on the in vivo material resorption and concomitant bone formation[J]. Journal of Materials Science Materials in Medicine, 2017, 28(3): 48.

    [53] SMITH B T, LU A, WATSON E, et al. Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration[J]. Acta Biomaterialia, 2018, 78: 341-350.

    [54] GROSFELD E C, SMITH B T, SANTORO M, et al. Fast dissolving glucose porogens for early calcium phosphate cement degradation and bone regeneration[J]. Biomedical Materials (Bristol, England), 2020, 15(2): 025002.

    [55] MONTAZEROLGHAEM M, RASMUSSON A, MELHUS H, et al. Simvastatin-doped pre-mixed calcium phosphate cement inhibits osteoclast differentiation and resorption[J]. Journal of Materials Science Materials in Medicine, 2016, 27(5): 83.

    [57] GHOSH S, WU V, PERNAL S, et al. Self-setting calcium phosphate cements with tunable antibiotic release rates for advanced antimicrobial applications[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 7691-7708.

    [58] PROKOPOWICZ M, SZEWCZYK A, SKWIRA A, et al. Biphasic composite of calcium phosphate-based mesoporous silica as a novel bone drug delivery system[J]. Drug Delivery and Translational Research, 2020, 10(2): 455-470.

    [59] LUCAS-APARICIO J, MANCHN , RUEDA C, et al. Silicon-calcium phosphate ceramics and silicon-calcium phosphate cements: substrates to customize the release of antibiotics according to the idiosyncrasies of the patient[J]. Materials Science and Engineering: C, 2020, 106: 110173.

    [60] DI FILIPPO M F, DOLCI L S, ALBERTINI B, et al. A radiopaque calcium phosphate bone cement with long-lasting antibacterial effect: from paste to injectable formulation[J]. Ceramics International, 2020, 46(8): 10048-10057.

    LI Hang, LIAO Jianguo, MA Tingting, FENG Jinlun. Research Progress on Modification of Calcium-Phosphorus Self-Curing Material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1454
    Download Citation