[1] P A ROSEN, S HENSLEY, I R JOUGHIN et al. Synthetic aperture radar interferometry. Proceedings of the IEEE, 88, 333-382(2000).
[2] 王超, 张红, 刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社, 2002.WANGCH, ZHANGH, LIUZH. Spaceborne Synthetic Aperture Radar Interferometry[M]. Beijing: Science Press, 2002.(in Chinese)
[3] R J SULLIVAN. Radar Foundations for Imaging and Advanced Concepts(2004).
[4] S KNEDLIK, O LOFFELD. Baseline estimation and prediction referring to the SRTM(2002).
[5] 卢正方, 刘波, 陈立福, 等. InSAR高度计基线抖动对相对高程精度的影响分析[J]. 工业控制计算机, 2021, 34(8):76-78, 129. doi: 10.3969/j.issn.1001-182X.2021.08.027LUZH F, LIUB, CHENL F, et al. Analysis of influence of InSAR altimeter baseline jitter on relative elevation accuracy[J]. Industrial Control Computer, 2021, 34(8):76-78, 129. (in Chinese). doi: 10.3969/j.issn.1001-182X.2021.08.027
[6] 李世忠,邵龙,黄志勇,等. 分布式InSAR卫星系统星间高精度基线测量方法[C]. 第八届高分辨率对地观测学术年会,北京,2022. doi: 10.11947/j.AGCS.2022.20210397LISH ZH, SHAOL, HUANGZH Y, et al. The method of high-precision baseline measurement intersatellites in distributed insar satellite system[C]. The 8th China High Resolution Earth Observation Conference, Beijing, 2022. (in Chinese). doi: 10.11947/j.AGCS.2022.20210397
[7] B RABUS, M EINEDER, A ROTH et al. The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57, 241-262(2003).
[8] R M DUREN, E WONG, B BRECKENRIDGE et al. Metrology, attitude, and orbit determination for spaceborne interferometric synthetic aperture radar, 3365, 51-60(1998).
[9] E WONG, W BRECKENRIDGE, D BOUSSALIS et al. Attitude determination for the shuttle radar topography mission(1999).
[10] Y SHEN, S J SHAFFER, R L JORDAN. Shuttle Radar Topography Mission (SRTM) flight system design and operations overview, 4152, 167-178(2000).
[11] 王静, 向茂生, 韦立登, 等. 基于距离约束的InSAR长基线高精度动态测量方法[J]. 电子与信息学报, 2012, 34(7): 1589-1595. doi: 10.3724/sp.j.1146.2011.01220WANGJ, XIANGM SH, WEIL D, et al. The dynamic measurement for long baseline of InSAR based on distance constraint[J]. Journal of Electronics & Information Technology, 2012, 34(7): 1589-1595.(in Chinese). doi: 10.3724/sp.j.1146.2011.01220
[12] 丁文哲, 张占月, 杨虹, 等. 星载观测平台的视线测量误差分配[J]. 空间控制技术与应用, 2017, 43(2):60-66. doi: 10.11728/cjss2017.02.238DINGW ZH, ZHANGZH Y, YANGH, et al. Error distribution of line-of-sight measurement on the satellite borne observation platform[J]. Aerospace Control and Application, 2017, 43(2):60-66. (in Chinese). doi: 10.11728/cjss2017.02.238
[13] 郭旭, 胡春晖, 颜昌翔, 等. 基于蒙特卡罗法的星载太阳辐照度光谱仪对日指向误差分析[J]. 光学 精密工程, 2021, 29(3):474-483. doi: 10.37188/ope.20212903.0474GUOX, HUCH H, YANCH X, et al. Analysis of Sun pointing error of spaceborne solar spectroradiom-eter based on Monte Carlo method[J]. Opt. Precision Eng., 2021, 29(3):474-483. (in Chinese). doi: 10.37188/ope.20212903.0474
[14] 潘云, 李颐, 颜昌翔. TDLAS一氧化碳浓度检测系统误差分配[J]. 光学 精密工程, 2021, 29(7):1539-1548. doi: 10.37188/OPE.20212907.1539PANY, LIY, YANCH X. Error distribution for TDLAS carbon monoxide concentration measurement system[J]. Opt. Precision Eng., 2021, 29(7):1539-1548. (in Chinese). doi: 10.37188/OPE.20212907.1539
[15] 张治彬, 李新洪, 安继萍. 基于蒙特卡罗法的轻气炮射击精度评估[J]. 空间控制技术与应用, 2019, 45(1):71-78. doi: 10.3969/j.issn.1674-1579.2019.01.012ZHANGZH B, LIX H, ANJ P. Firing accuracy evaluation of light gas Gun based on Monte Carlo method[J]. Aerospace Control and Application, 2019, 45(1):71-78.(in Chinese). doi: 10.3969/j.issn.1674-1579.2019.01.012