• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 20, Issue 7, 631 (2022)
LIU Xiaoming1、*, YU Junsheng2, and CHEN Xiaodong2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.11805/tkyda2021299 Cite this Article
    LIU Xiaoming, YU Junsheng, CHEN Xiaodong. Quasi-optical technology in the millimeter and terahertz wave ranges: theory, applications and development[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(7): 631 Copy Citation Text show less
    References

    [2] CHEN J,HAO Z,YU C,et al. Millimeter wave and terahertz technology[J]. SCIENTIA SINICA Informationis, 2016,46(8):1086-1107.

    [3] ROTHMAN L S,BARBE A,CHRIS B D,et al. The HITRAN molecular spectroscopic database:edition of 2000 including updates through 2001[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003,82(1-4):5-44.

    [4] HU W,JI J,LIU R,et al. Terahertz atmosphere remote sensing[J]. Chinese Optics, 2017,10(5):656-665.

    [5] KULESA C. Terahertz spectroscopy for astronomy: from comets to cosmology[J]. IEEE Transactions on Terahertz Science and Technology, 2011,1(1): 232-240.

    [6] DE B P,ADE P A R,BOCK J J,et al. A flat universe from high-resolution maps of the cosmic microwave background radiation[J]. Nature, 2000,404(6781):955-959.

    [7] BARTUS P,ISIDRO G M,LA R C,et al. Arecibo observatory for all[J]. Astronomy Education Review, 2007,6(1):1-14.

    [8] RUDOLF H,CARTER M,BARYSHEV A. The ALMA front end optics—system aspects and European measurement results[J]. IEEE Transactions on Antennas and Propagation, 2007,55(11):2966-2973.

    [12] LI S,LI C,LIU W,et al. Study of terahertz superresolution imaging scheme with real-time capability based on frequency scanning antenna[J]. IEEE Transactions on Terahertz Science and Technology, 2016,6(3):451-463.

    [13] KENT B M,VAN T. Measurements of incident radio frequency power levels from the L3 technologies provision body scanner for the national academy of science[C]// 2017 Antenna Measurement Techniques Association Symposium(AMTA). Atlanta, GA: IEEE, 2017:1-6.

    [17] GOLDSMITH P F. Quasioptical systems:Gaussian beam quasioptical propagation and applications[M]. New York:IEEE Press, 1998.

    [18] HIRSHFIELD J L,PETELIN M I. Quasi-optical control of intense microwave transmission[M]. Dordrecht:Springer, 2005.

    [20] DEGENFORD J E,SIRKIS M D,STEIER W H. The reflecting beam waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, 1964,12(4):445-453.

    [21] DEGENFORD J E. Power-handling capability of a reflecting beam waveguide[J]. Proceedings of the IEEE, 1965,53(5):493-494.

    [23] BALANIS C A. Antenna theory:analysis and design[M]. 3rd. New York:Wiley Interscience, 2005.

    [24] CLARRICOATS P J B. Microwave horns and feeds[M]. New York:IEEE Press, 1994.

    [25] MCKAY J E,ROBERTSON D A,CRUICKSHANK P A S,et al. Compact wideband corrugated feedhorns with ultra-low sidelobes for very high performance antennas and quasi-optical systems[J]. IEEE Transactions on Antennas and Propagation, 2013,61(4): 1714-1721.

    [26] MCKAY J E,ROBERTSON D A,SPEIRS P J,et al. Compact corrugated feedhorns with high Gaussian coupling efficiency and -60 dB sidelobes[J]. IEEE Transactions on Antennas and Propagation, 2016,64(6):2518-2522.

    [29] GRANET C,JAMES G L. Design of corrugated horns:a primer[J]. IEEE Antennas and Propagation Magazine, 2005,47(2):76-84.

    [30] ELLISON B N,OLDFIELD M L,MATHESON D N,et al. Corrugated feedhorns at terahertz frequencies-preliminary results[J]. IEEE Transactions on Microwave Theory and Techniques, 1995,43(4):375254.

    [31] GONZALEZ A, KANEKO K, KOJIMA T, et al. Terahertz corrugated horns 1.25~1.57 THz: design, Gaussian modeling, and measurements[J]. IEEE Transactions on Terahertz Science and Technology, 2016:1-11.

    [33] MUNK B A. Frequency Selective Surface:theory and design[M]. New York:Wiley Interscience, 2000.

    [35] YANG X, ZENG Y, LIU X, et al. Low-loss Frequency Selective Surface for multi-band THz transmission measurement[J]. Microwave and Optical Technology Letters, 2020,62(5):1860-1865.

    [36] MARTIN R J, MARTIN D H. Quasi-optical antennas for radiometric remote-sensing[J]. Electronics & Communication Engineering Journal, 1996,8(1):37-48.

    [37] ANTONOPOULOS C,CAHILL R,PARKER E A,et al. Multilayer frequency-selective surfaces for millimeter and submillimeter wave applications[J]. International Journal of Infrared & Millimeter Waves, 1993,14(9):1769-1788.

    [38] DICKIE R, CAHILL R, FUSCO V, et al. THz Frequency Selective Surface filters for earth observation remote sensing instruments[J]. IEEE Transactions on Terahertz Science and Technology, 2011,1(2):450-461.

    [40] MARHEFKA R J, YOUNG J D, TOWLE J P. Design, fabrication and measurement of an FSS antenna ground plane[C]// 2007 IEEE Antennas and Propagation Society International Symposium. Honolulu,HI:IEEE, 2007:3972-3975.

    [41] MITTRA R,CHAN C H,CWIK T. Techniques for analyzing frequency selective surfaces-a review[J]. Proceedings of the IEEE, 1988,76(12):1593-1615.

    [42] BOZZI M,PERREGRINI L,WEINZIERL J,et al. Efficient analysis of quasi-optical filters by a hybrid MoM/BI-RME method[J]. IEEE Transactions on Antennas and Propagation, 2001,49(7):1054-1064.

    [43] DUBROVKA R, VAZQUEZ J, PARINI C, et al. Equivalent circuit method for analysis and synthesis of frequency selective surfaces[J]. IEE Proceedings-Microwaves,Antennas and Propagation, 2006,153(3):213.

    [44] MIDDENDORF J R, CETNAR J S, OWSLEY J, et al. High fill-factor substrate-based wire-grid polarizers with high extinction ratios[J]. IEEE Transactions on Terahertz Science and Technology, 2014,4(3):376-382.

    [45] ZHANG F,HUANG M,WANG H,et al. Study of dual-frequency polarizer for electron cyclotron resonance heating systems of 105 and 140 GHz[J]. IEEE Transactions on Plasma Science, 2020,48(5):1298-1302.

    [46] HUNTER R I, ROBERSON D A, GOY P, et al. Design of high-performance millimeter wave and sub-millimeter wave quasi-optical isolators and circulators[J]. IEEE Transactions on Microwave Theory and Techniques, 2007,55(5):890-898.

    [47] CHEN C H,YU T H,LEE Y C. Direct metal transfer lithography for fabricating wire-grid polarizer on flexible plastic substrate[J]. Journal of Microelectromechanical Systems, 2011,20(4):916-921.

    [48] LIU Z, LIU Y, ZHANG W, et al. Low-profile reflective polarization conversion metasurface with frequency selective characteristics[J]. Materials Research Express, 2019,6(8):085807.

    [49] PEREZ-PALOMINO G,PAGE J E,ARREBOLA M,et al. A design technique based on equivalent circuit and coupler theory for broadband linear to circular polarization converters in reflection or transmission mode[J]. IEEE Transactions on Antennas and Propagation, 2018,66(5):2428-2438.

    [50] FONSECA N J G, MANGENOT C. High-performance electrically thin dual-band polarizing reflective surface for broadband satellite applications[J]. IEEE Transactions on Antennas and Propagation, 2016,64(2):640-649.

    [51] TANG W, MERCADER-PELLICER S, GOUSSETIS G, et al. Low-profile compact dual-band unit cell for polarizing surfaces operating in orthogonal polarizations[J]. IEEE Transactions on Antennas and Propagation, 2017,65(3):1472-1477.

    [52] MARTINEZ DE RIOJA E,ENCINAR J A,PINO A,et al. Broadband linear-to-circular polarizing reflector for space applications in Ka-band[J]. IEEE Transactions on Antennas and Propagation, 2020,68(9):6826-6831.

    [53] MERCADER PELLICER S,TANG W,BRESCIANI D,et al. Angularly stable linear-to-circular polarizing reflectors for multiple beam antennas[J]. IEEE Transactions on Antennas and Propagation, 2001,69(8):4380-4389.

    [54] FARTOOKZADEH M, MOHSENI A S H. Dual-band reflection-type circular polarizers based on anisotropic impedance surfaces[J]. IEEE Transactions on Antennas and Propagation, 2016,64(2):826-830.

    [55] LIU X,ZHANG J,LI W,et al. Three-band polarization converter based on reflective metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017(16):924-927.

    [56] JANZ S,BOYD D A,ELLIS R F. Reflectance characteristics in the submillimeter and millimeter wavelength region of a vacuum compatible absorber[J]. International Journal of Infrared and Millimeter Waves, 1987,8(6):627-635.

    [57] LIU H,LIU X,YUAN K,et al. A five-channel grating spectrometer for millimeter waves[J]. International Journal of Infrared & Millimeter Waves, 1993,14(5):1083-1089.

    [58] MONNIER J D. Optical interferometry in astronomy[J]. Reports on Progress in Physics, 2003,66(5):789-857.

    [59] CLARKE R N,ROSENBERG C B. Fabry-Perot and open resonators at microwave and millimetre wave frequencies,2~300 GHz[J]. Journal of Physics E:Scientific Instruments, 1982,15(1):9-24.

    [60] O'SULLIVAN C,ATAD ETTEDGUI E,DUNCAN W,et al. Far-infrared optics design & verification[J]. International Journal of Infrared and Millimeter Waves, 2002,23(7):1029-1045.

    [61] YU J, LIU S, XU L, et al. An integrated quasi-optical analysis method and its experimental verification[J]. Journal of Infrared, Millimeter,and Terahertz Waves, 2009,31(2):181-195.

    [62] DAUBECHIES I. The wavelet transform, time frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990,36(5):961-1005.

    [66] DOYLE D,PILBRATT G,TAUBER J. The Herschel and Planck space telescopes[J]. Proceedings of the IEEE, 2009,97(8):1403-1411.

    [67] ROLO L F,PAQUAY M H,DADDATO R J,et al. Terahertz antenna technology and verification:Herschel and Planck-a review[J]. IEEE Transactions on Microwave Theory and Techniques, 2010,58(7):2046-2063.

    [68] YU J,LIU S,XU L,et al. Study of a two-layer dichroic for quasioptical network[J]. Microwave and Optical Technology Letters, 2010,52(4):900-904.

    [70] LI Z P,ALA-LAURINAHO J,DU Z,et al. Realization of wideband hologram compact antenna test range by linearly adjusting the feed location[J]. IEEE Transactions on Antennas and Propagation, 2014,62(11):5628-5633.

    [71] GOLDSMITH P F, LIS D C. Early science results from the Heterodyne Instrument for the Far Infrared(HIFI) on the Herschel space observatory[J]. IEEE Transactions on Terahertz Science and Technology, 2012,2(4):383-392.

    [72] LAWRENCE C R. The low frequency instrument on Planck[J]. New Astronomy Reviews, 2003,47(11-12):1025-1032.

    [73] WOOTTEN A, THOMPSON A R. The Atacama large millimeter/submillimeter array[J]. Proceedings of the IEEE, 2009, 97(8): 1463-1471.

    [74] MATHER J C, HAUSER M G, BENNETT C L, et al. Early results from the Cosmic Background Explorer(COBE) [C]// AIP Conference Proceedings. Bangalore,India:AIP, 1992:266-278.

    [75] MELNICK G J. Submillimeter wave astronomy satellite science highlights[J]. Advances in Space Research, 2004,34(3):511-518.

    [76] FRISK U, HAGSTR.M M, ALA LAURINAHO J, et al. The odin satellite: I. radiometer design and test[J]. Astronomy & Astrophysics, 2003,402(3):L27-L34.

    [79] TSAN Mo. AMSU-a antenna pattern corrections[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(1):103-112.

    [80] SAUNDERS R W,HEWISON T J,STRINGER S J,et al. The radiometric characterization of AMSU-B[J]. IEEE Transactions on Microwave Theory and Techniques, 1995,43(4):760-771.

    [81] BARATH F T,CHAVEZ M C,COFIELD R E,et al. The upper atmosphere research satellite microwave limb sounder instrument[J]. Journal of Geophysical Research, 1993,98(D6):10751.

    [82] LIANG S. Comprehensive remote sensing[M]. Oxford:Elsevier, 2018.

    [83] COSTES L, BUSHELL C, BUCKLEY M J, et al. Microwave Humidity Sounder(MHS) antenna[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1999:3870.

    [84] OCHIAI S, KIKUCHI K, NISHIBORI T, et al. Gain nonlinearity calibration of submillimeter radiometer for JEM/SMILES[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012,5(3):962-969.

    [85] EVANS K F. Submillimeter-wave cloud ice radiometer:simulations of retrieval algorithm performance[J]. Journal of Geophysical Research, 2002,107(D3):4028.

    [86] WANG J R, CHANG L A, MONOSMITH B, et al. Water vapor profiling from CoSSIR radiometric measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(1):137-145.

    [87] OLDFIELD M, MOYNA B, ALLOUIS E, et al. MARSCHALS: development of an airborne millimeter wave limb sounder[J]. Proceedings of SPIE, 2001(4540):221-228.

    [88] REZAC L,ZHAO Y,HARTOGH P,et al. Three-dimensional analysis of spatial resolution of MIRO/Rosetta measurements at 67P/ Churyumov Gersimenko[J]. Astronomy & Astrophysics, 2019(630):34.

    [89] HAN Y,WENG F,ZOU X,et al. Characterization of geolocation accuracy of Suomi NPP advanced technology microwave sounder measurements[J]. Journal of Geophysical Research: Atmospheres, 2016,121(9):4933-4950.

    [90] TSAN Mo. Calibration and validation of the NOAA-18 microwave radiometers[C]// 2006 IEEE MicroRad. San Juan,Puerto Rico: IEEE, 2006:24-28.

    [91] HAMMAR A,WHALE M,FORSBERG P,et al. Optical tolerance analysis of the multi-beam limb viewing instrument STEAMR[J]. IEEE Transactions on Terahertz Science and Technology, 2014,4(6):714-721.

    [92] GELSTHORPE R V,HELIERE A,LEFEBVRE A,et al. Aspects of the EarthCARE satellite and its payload[J]. Proceedings of SPIE -The International Society for Optical Engineering, 2010(258):109-132.

    [93] SCHRODER A, MURK A, WYLDE R, et al. Electromagnetic design of calibration targets for MetOp-SG microwave instruments[J]. IEEE Transactions on Terahertz Science and Technology, 2017,7(6):677-685.

    [94] JACOB K,SCHRODER A,KOTIRANTA M,et al. Design of the calibration target for SWI on JUICE[C]// 2016 41st International Conference on Infrared,Millimeter,and Terahertz waves(IRMMW-THz). Copenhagen,Denmark:IEEE, 2016:1-2.

    [95] BUEHLER S A,JIM..NEZ C,EVANS K F,et al. A concept for a satellite mission to measure cloud ice water path,ice particle size, and cloud altitude[J]. Quarterly Journal of the Royal Meteorological Society, 2007,133(S2):109-128.

    [96] LYONS B N,SHERIDAN I,SHEEHY F,et al. A satellite-based multichannel MM-wave receiver implemented using quasi-optical demultiplexing[J]. Microwave Journal, 1990(33):197-202.

    [97] LIU X,YU H,GAN L,et al. A Gaussian beam method for push-broom antenna design[J]. IEEE Transactions on Antennas and Propagation, 2020,68(12):8144-8149.

    [98] LIU X, WANG Y, ZHANG T, et al. A compact multiband quasi-optical system for plasma detection[J]. IEEE Transactions on Antennas and Propagation, 2020,68(6):4916-4924.

    [99] EARLE K A, TIPIKIN D S, FREED J H. Far-infrared electron-paramagnetic-resonance spectrometer utilizing a quasioptical reflection bridge[J]. Review of Scientific Instruments, 1996,67(7):2502-2513.

    [100] LIU X, YU J. Characterization of the dielectric properties of water and methanol in the D-band using a quasi-optical spectroscopy[J]. Scientific Reports, 2019,9(1):18562.

    [101] LIU X,YU S,GAN L,et al. Broadband quasi-optical dielectric spectroscopy for solid and liquid samples[J]. Journal of Infrared, Millimeter,and Terahertz Waves, 2020,41(7):810-824.

    [102] LIU X,GAN L,YANG B. Millimeter-wave free-space dielectric characterization[J]. Measurement, 2021(179):109472.

    CLP Journals

    [1] MENG Tianhua, ZHAO Guozhong, WANG Haohang, LIU Hongmei, REN Jianguang, HU Weidong, LU Yuhe, LI Wenyu. Research progress of terahertz nondestructive testing in the field of cultural relic[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(2): 157

    LIU Xiaoming, YU Junsheng, CHEN Xiaodong. Quasi-optical technology in the millimeter and terahertz wave ranges: theory, applications and development[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(7): 631
    Download Citation