• Chinese Optics Letters
  • Vol. 19, Issue 11, 110501 (2021)
Ren Noguchi1, Kohei Suzuki1, Yoshiki Moriguchi1, Minoru Oikawa2, Yuichiro Mori2, Takashi Kakue3, Tomoyoshi Shimobaba3, Tomoyoshi Ito3, and Naoki Takada2、*
Author Affiliations
  • 1Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan
  • 2Research and Education Faculty, Kochi University, Kochi 780-8520, Japan
  • 3Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
  • show less

    Abstract

    In amplitude-modulation-type electroholography, the binary-weighted computer-generated hologram (BW-CGH) facilitates the gradation-expressible reconstruction of three-dimensional (3D) objects. To realize real-time gradation-expressible electroholography, we propose an efficient and high-speed method for calculating bit planes consisting of BW-CGHs. The proposed method is implemented on a multiple graphics processing unit (GPU) cluster system comprising 13 GPUs. The proposed BW-CGH method realizes eight-gradation-expressible electroholography at approximately the same calculation speed as that of conventional electroholography based on binary computer-generated holograms. Consequently, we were able to successfully reconstruct a real-time electroholographic 3D video comprising approximately 180,000 points expressed in eight gradations at 30 frames per second.

    1. Introduction

    Real-time electroholography based on a computer-generated hologram (CGH) is considered to realize the ultimate three-dimensional (3D) television experience[14]. However, the enormous amount of CGH computation associated with real-time electroholography prevents its practical realization.

    Copy Citation Text
    Ren Noguchi, Kohei Suzuki, Yoshiki Moriguchi, Minoru Oikawa, Yuichiro Mori, Takashi Kakue, Tomoyoshi Shimobaba, Tomoyoshi Ito, Naoki Takada. Real-time gradation-expressible amplitude-modulation-type electroholography based on binary-weighted computer-generated hologram[J]. Chinese Optics Letters, 2021, 19(11): 110501
    Download Citation
    Category: Diffraction, Gratings, and Holography
    Received: May. 7, 2021
    Accepted: Sep. 14, 2021
    Posted: Sep. 15, 2021
    Published Online: Oct. 14, 2021
    The Author Email: Naoki Takada (ntakada@is.kochi-u.ac.jp)