• Chinese Optics Letters
  • Vol. 19, Issue 11, 110501 (2021)
Ren Noguchi1, Kohei Suzuki1, Yoshiki Moriguchi1, Minoru Oikawa2, Yuichiro Mori2, Takashi Kakue3, Tomoyoshi Shimobaba3, Tomoyoshi Ito3, and Naoki Takada2、*
Author Affiliations
  • 1Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan
  • 2Research and Education Faculty, Kochi University, Kochi 780-8520, Japan
  • 3Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
  • show less
    DOI: 10.3788/COL202119.110501 Cite this Article Set citation alerts
    Ren Noguchi, Kohei Suzuki, Yoshiki Moriguchi, Minoru Oikawa, Yuichiro Mori, Takashi Kakue, Tomoyoshi Shimobaba, Tomoyoshi Ito, Naoki Takada. Real-time gradation-expressible amplitude-modulation-type electroholography based on binary-weighted computer-generated hologram[J]. Chinese Optics Letters, 2021, 19(11): 110501 Copy Citation Text show less
    References

    [1] S. A. Benton, J. V. M. Bove. Holographic Imaging(2008).

    [2] N. Hashimoto, S. Morokawa, K. Kitamura. Real-time holography using the high-resolution LCTV-SLM. Proc. SPIE, 1461, 291(1991).

    [3] K. Sato, K. Higuchi, H. Katsuma. Holographic television by liquid crystal devices. Proc. SPIE, 1667, 19(1992).

    [4] T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, T. Ito. High-performance parallel computing for next generation holographic imaging. Nat. Electron., 1, 254(2018).

    [5] Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung, C. Tan, T.-C. Chong. Fast CGH computation using S-LUT on GPU. Opt. Express, 17, 18543(2009).

    [6] P. Tsang, W. K. Cheung, T.-C. Poon, C. Zhou. Holographic video at 40 frames per second for 4-million object points. Opt. Express, 19, 15205(2011).

    [7] F. Yaraş, H. Kang, L. Onural. Real-time phase-only color holographic video display system using LED illumination. Appl. Opt., 48, H48(2009).

    [8] T. Sugawara, Y. Ogihara, Y. Sakamoto. Fast point-based method of a computer-generated hologram for a triangle-patch model by using a graphics processing unit. Appl. Opt., 55, A160(2016).

    [9] M.-W. Kwon, S.-C. Kim, E.-S. Kim. GPU-based implementation of one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects. Opt. Eng., 53, 035103(2014).

    [10] Y. Sando, K. Satoh, D. Barada, T. Yatagai. Real-time interactive holographic 3D display with a 360° horizontal viewing zone. Appl. Opt., 58, G1(2019).

    [11] N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, T. Ito. Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system. Appl. Opt., 51, 7303(2012).

    [12] Y. Pan, X. Xu, X. Liang. Fast distributed large-pixel-count hologram computation using a GPU cluster. Appl. Opt., 52, 6562(2013).

    [13] B. J. Jackin, H. Miyata, T. Ohkawa, K. Ootsu, T. Yokota, Y. Hayasaki, T. Yatagai, T. Baba. Distributed calculation method for large pixel-number holograms by decomposition of object and hologram planes. Opt. Lett., 39, 6867(2014).

    [14] B. J. Jackin, S. Watanabe, K. Ootsu, T. Ohkawa, T. Yokota, Y. Hayasaki, T. Yatagai, T. Baba. Decomposition method for fast computation of gigapixel-sized Fresnel holograms on a graphics processing unit cluster. Appl. Opt., 57, 3134(2018).

    [15] T. Baba, S. Watanabe, B. J. Jackin, K. Ootsu, T. Ohkawa, T. Yokota, Y. Hayasaki, T. Yatagai. Fast computation with efficient object data distribution for large-scale hologram generation on a multi-GPU cluster. IEICE Trans. Inf. Sys., E102-D, 1310(2019).

    [16] H. Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, T. Ito. Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network. Opt. Eng., 55, 093108(2016).

    [17] H. Sannomiya, N. Takada, T. Sakaguchi, H. Nakayama, M. Oikawa, Y. Mori, T. Kakue, T. Shimobaba, T. Ito. Real-time electroholography using a single spatial light modulator and a cluster of graphics-processing units connected by a gigabit Ethernet network. Chin. Opt. Lett., 18, 020902(2020).

    [18] H. Sannomiya, N. Takada, K. Suzuki, T. Sakaguchi, H. Nakayama, M. Oikawa, Y. Mori, T. Kakue, T. Shimobaba, T. Ito. Real-time spatiotemporal division multiplexing electroholography for 1,200,000 object points using multiple-graphics processing unit cluster. Chin. Opt. Lett., 18, 070901(2020).

    [19] M. L. Huebschman, B. Munjuluri, H. R. Garner. Dynamic holographic 3-D image projection. Opt. Express, 11, 437(2003).

    [20] M. Chlipala, T. Kozacki. Color LED DMD holographic display with high resolution across large depth. Opt. Lett., 44, 4255(2019).

    [21] J-P. Liu, M-H. Wu, P. W. M. Tsang. 3D display by binary computer generated holograms with localized random down-sampling and adaptive intensity accumulation. Opt. Express, 28, 24526(2020).

    [22] S. Jiao, D. Zhang, C. Zhang, Y. Gao, T. Lei, X. Yuan. Complex-amplitude holographic projection with a digital micromirror device (DMD) and error diffusion algorithm. IEEE J. Sel. Top. Quantum Electron., 26, 2800108(2020).

    [23] K. Min, J.-H. Park. Quality enhancement of binary-encoded amplitude holograms by using error diffusion. Opt. Express, 28, 38140(2020).

    [24] Y. Takaki, N. Okada. Hologram generation by horizontal scanning of a high-speed spatial light modulator. Appl. Opt., 48, 3255(2009).

    [25] Y. Takaki, N. Okada. Reduction of image blurring of horizontally scanning holographic display. Opt. Express, 18, 11327(2010).

    [26] Y. Takaki, K. Fujii. Viewing-zone scanning holographic display using a MEMS spatial light modulator. Opt. Express, 22, 24713(2014).

    [27] Y. Takekawa, Y. Takashima, Y. Takaki. Holographic display having a wide viewing zone using a MEMS SLM without pixel pitch reduction. Opt. Express, 28, 7392(2020).

    [28] Y. Takaki, M. Yokouchi. Speckle-free and grayscale hologram reconstruction using time-multiplexing technique. Opt. Express, 19, 7567(2011).

    [29] M.-C. Park, B.-R. Lee, J.-Y. Son, O. Chernyshov. “Properties of DMDs for holographic displays. J. Modern Opt., 62, 1600(2015).

    [30] M. Fujiwara, N. Takada, H. Araki, S. Ikawa, H. Niwase, Y. Maeda, H. Nakayama, T. Kakue, T. Shimobaba, T. Ito. Gradation representation method using binary-weighted computer-generated hologram. Opt. Eng., 56, 023105(2017).

    [31] M. Fujiwara, N. Takada, H. Araki, C. W. Ooi, S. Ikawa, Y. Maeda, H. Niwase, T. Kakue, T. Shimobaba, T. Ito. Gradation representation method using binary-weighted computer-generated hologram based on pulse width modulation. Chin. Opt. Lett., 15, 060901(2017).

    [32] M. Fujiwara, N. Takada, H. Araki, S. Ikawa, Y. Maeda, H. Niwase, M. Oikawa, T. Kakue, T. Shimobaba, T. Ito. Color representation method using RGB color binary-weighted computer-generated holograms. Chin. Opt. Lett., 16, 080901(2018).

    [33] D. Dudley, W. M. Duncan, J. Slaughter. Emerging digital micromirror device (DMD) applications. Proc. SPIE, 4985, 14(2003).

    Data from CrossRef

    [1] Yusuke Sando, Yutaro Goto, Daisuke Barada, Toyohiko Yatagai. Real-time computing for a holographic 3D display based on the sparse distribution of a 3D object and requisite Fourier spectrum. Applied Optics, 62, 5276(2023).

    Ren Noguchi, Kohei Suzuki, Yoshiki Moriguchi, Minoru Oikawa, Yuichiro Mori, Takashi Kakue, Tomoyoshi Shimobaba, Tomoyoshi Ito, Naoki Takada. Real-time gradation-expressible amplitude-modulation-type electroholography based on binary-weighted computer-generated hologram[J]. Chinese Optics Letters, 2021, 19(11): 110501
    Download Citation