• Chinese Journal of Lasers
  • Vol. 45, Issue 3, 307010 (2018)
Wang Cheng1, Dong Xiaona1, Cai Gan1, Xiang Huazhong1, Zheng Gang1, and Zhang Dawei2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0307010 Cite this Article Set citation alerts
    Wang Cheng, Dong Xiaona, Cai Gan, Xiang Huazhong, Zheng Gang, Zhang Dawei. Photoacoustic Elastography for Biological Tissue[J]. Chinese Journal of Lasers, 2018, 45(3): 307010 Copy Citation Text show less
    References

    [1] Luo J W, Bai J. Research development of ultrasound elastography[J]. China Medical Devices Information, 11, 23-31(2005).

    [2] Zheng Y P, Huang Y P. Soft tissue elasticity measurement: techniques, instrument and applications[J]. China Medical Devices, 26, 1-15(2011).

    [3] Catheline S, Gennisson J L, Fink M. Measurement of elastic nonlinearity of soft solid with transient elastography[J]. The Journal of the Acoustical Society of America, 114, 3087-3091(2003). http://www.ncbi.nlm.nih.gov/pubmed/14714790

    [4] Abraham C N, Kim B S, Erkamp R Q et al. High-resolution elasticity imaging for tissue engineering[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 47, 956-966(2000). http://www.ncbi.nlm.nih.gov/pubmed/18238630

    [5] Barr R G, Nakashima K, Amy D et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast[J]. Ultrasound in Medicine & Biology, 41, 1148-1160(2015). http://europepmc.org/abstract/MED/25795620

    [6] Ni J, Fu Q Y, Mei Q et al. Diagnostic value of lateral shear wave velocity and APRI in the diagnosis of liver cirrhosis with Child-Pugh[J]. Journal of Navy Medicine, 37, 43-46(2016).

    [7] Fatemi M, Greenleaf J F. Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 96, 6603-6608(1999). http://europepmc.org/articles/PMC21961/

    [8] Qi W J, Li R, Ma T et al. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer[J]. Applied Physics Letters, 104, 123702(2014). http://europepmc.org/abstract/med/24737920

    [9] Qi W J, Chen R M, Chou L et al. Phase-resolved acoustic radiation force optical coherence elastography[J]. Journal of Biomedical Optics, 17, 110505(2012). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3487536/

    [10] Qi W J, Li R, Ma T et al. Resonant acoustic radiation force optical coherence elastography[J]. Applied Physics Letters, 103, 103704(2013). http://scitation.aip.org/content/aip/journal/apl/103/10/10.1063/1.4820252

    [11] Gao G D, Yang S H, Xing D. Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement[J]. Optics Letters, 36, 3341-3343(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-17-3341

    [12] Zeng L Z, Yang S H, Xing D. Progress on photoacoustic imaging and its biomedical application[J]. Journal of South China Normal University (Natural Science Edition), 48, 9-15(2016).

    [13] Vappou J, Maleke C, Konofagou E E. Quantitative viscoelastic parameters measured by harmonic motion imaging[J]. Physics in Medicine & Biology, 54, 3579-3594(2009). http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ0216093576

    [14] Biswas D, Vasudevan S, Chen G C et al. Quantitative photoacoustic characterization of blood clot in blood: a mechanobiological assessment through spectral information[J]. Review of Scientific Instruments, 88, 024301(2017). http://www.ncbi.nlm.nih.gov/pubmed/28249521

    [15] Gao G D. Application of photoacoustic viscoelastic imaging in biomedicine[D]. Guangzhou: South China Normal University(2011).

    [16] Ishihara M, Sato M, Sato S et al. Viscoelastic characterization of biological tissue by photoacoustic measurement[J]. Japanese Journal of Applied Physics, 42, 556-558(2003). http://ci.nii.ac.jp/naid/10010716936

    [17] Li J H, Tang Z L, Zheng C J et al. Viscoelastic characterization of biological tissue by photoacoustic technique[C]. SPIE, 6047, 604703(2006).

    [18] Zhao Y, Yang S H, Chen C G et al. Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement[J]. Optics Letters, 39, 2565-2568(2014). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=205449

    [19] Zhao Y, Chen C G, Liu H W et al. Time-resolved photoacoustic measurement for evaluation of viscoelastic properties of biological tissues[J]. Applied Physics Letters, 109, 441-463(2016). http://scitation.aip.org/content/aip/journal/apl/109/20/10.1063/1.4968188

    [20] Gao F, Feng X H, Zheng Y J. Photoacoustic elastic oscillation and characterization[J]. Optics Express, 23, 20617-20628(2015). http://www.ncbi.nlm.nih.gov/pubmed/26367914

    [21] Insana M F, Wagner R F, Brown D G et al. Describing small-scale structure in random media using pulse-echo ultrasound[J]. Journal of the Acoustical Society of America, 87, 179-92(1990). http://scitation.aip.org/content/asa/journal/jasa/87/1/10.1121/1.399283

    [22] An R R. Study of photoacoustic signals in biological tissues including tumors with different physical properties[D]. Nanjing: Nanjing University of Science and Technology, 36-43(2013).

    [23] Hai P F, Yao J J, Li G et al. Photoacoustic elastography[J]. Optics Letters, 41, 725-732(2016).

    [24] Hai P F, Zhou Y, Gong L et al. Quantitative photoacoustic elastography in humans[J]. Journal of Biomedical Optics, 21, 066011(2016). http://www.ncbi.nlm.nih.gov/pubmed/27304419

    [25] Zhang J, Yang S H, Ji X R et al. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation[J]. Journal of the American College of Cardiology, 64, 385-390(2014). http://europepmc.org/abstract/med/25060374

    [26] Chen C G, Xing D, Yang S H et al. Integrated mechanical and structural features for photoacoustic characterization of atherosclerosis using a quasi-continuous laser[J]. Optics Express, 23, 17309-17315(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-13-17309

    [27] Chen C G, Zhao Y, Yang S H et al. Mechanical characterization of intraluminal tissue with phase-resolved photoacoustic viscoelasticity endoscopy[J]. Biomedical Optics Express, 6, 4975-4980(2015). http://europepmc.org/abstract/MED/26713209

    [28] Wadamori N. Non-restrained measurement of Young's modulus for soft tissue using a photoacoustic technique[J]. Applied Physics Letters, 105, 103707(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6898771

    [29] Manduca A, Oliphant T, Dresner M et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity[J]. Medical Image Analysis, 5, 237-254(2001). http://www.ncbi.nlm.nih.gov/pubmed/11731304

    Wang Cheng, Dong Xiaona, Cai Gan, Xiang Huazhong, Zheng Gang, Zhang Dawei. Photoacoustic Elastography for Biological Tissue[J]. Chinese Journal of Lasers, 2018, 45(3): 307010
    Download Citation