• Chinese Optics Letters
  • Vol. 21, Issue 4, 040602 (2023)
Zhou Ju, Jiaxuan Liu, and Jianjun Yu*
Author Affiliations
  • Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.3788/COL202321.040602 Cite this Article Set citation alerts
    Zhou Ju, Jiaxuan Liu, Jianjun Yu. W-band radio-over-fiber transmission system with delta-sigma modulation and direct detection[J]. Chinese Optics Letters, 2023, 21(4): 040602 Copy Citation Text show less
    References

    [1] L. Zhao, J. Yu. 10 Gb/s 16-quadrature amplitude modulation signal delivery over a wireless fiber system by using a directly modulated laser for electrical/optical conversion. Chin. Opt. Lett., 13, 060601(2015).

    [2] J. Xiao, C. Tang, X. Li, J. Yu, X. Huang, C. Yang, N. Chi. Polarization multiplexing QPSK signal transmission in optical wireless-over fiber integration system at W-band. Chin. Opt. Lett., 12, 050603(2014).

    [3] M. Wu, J. Zhang, M. Zhu, S. Gao, Z. Wang, X. Liu, B. Hua, Y. Cai, M. Lei, Y. Zou, Q. Li, Y. Wei, W. Tong, A. Li. Cost-efficient fiber-wireless-fiber integration system at 28-GHz Ka-band for 5G millimeter-wave coverage scenario. 19th International Conference on Optical Communications and Networks (ICOCN), 01(2021).

    [4] G. -K. Chang, L. Cheng. Fiber-wireless integration for future mobile communications. IEEE Radio and Wireless Symposium (RWS), 16(2017).

    [5] X. Li, J. Yu, J. Xiao, Y. Xu. Fiber-wireless-fiber link for 128-Gb/s PDM-16QAM signal transmission at W-band. IEEE Photon. Technol. Lett., 26, 1948(2014).

    [6] J. Yu, X. Li, W. Zhou. Tutorial: broadband fiber-wireless integration for 5G+ communication. APL Photonics, 3, 111101(2019).

    [7] J. Terada, T. Shimada, A. Otaka. Optical access network technologies for future radio access networks. IEEE Photonics Society Summer Topical Meeting Series (SUM), 37(2017).

    [8] Y. Cai, X. Gao, Y. Ling, B. Xu, K. Qiu. Power-efficient heterodyne radio over fiber link with laser phase noise robustness. Chin. Opt. Lett., 17, 110602(2019).

    [9] T. Pfeiffer. Next generation mobile fronthaul and midhaul architectures [Invited]. J. Opt. Commun. Netw., 7, B38(2015).

    [10] C. Lim, Y. Tian, C. Ranaweera, T. A. Nirmalathas, E. Wong, K. Lee. Evolution of radio-over-fiber technology. J. Light. Technol., 37, 1647(2019).

    [11] B. Zhu, Y. Wang, W. Li, F. Wang, J. Liu, M. Kong, J. Yu. Delivery of 40 Gbit/s W-band signal over 4600 m wireless distance employing advanced digital signal processing. Chin. Opt. Lett., 20, 103901(2022).

    [12] X. Li, J. Yu, L. Zhao, K. Wang, C. Wang, M. Zhao, W. Zhou, J. Xiao. 1-Tb/s millimeter-wave signal wireless delivery at D-band. J. Light. Technol., 37, 196(2019).

    [13] K. Wang, W. Zhou, L. Zhao, F. Zhao, J. Yu. Bi-directional OFDM truncated PS-4096QAM signals transmission in a full-duplex MMW-RoF system at E-band. J. Light. Technol., 39, 3412(2021).

    [14] X. Li, J. Xiao, J. Yu. Long-distance wireless mm-wave signal delivery at W-band. J. Light. Technol., 34, 661(2016).

    [15] L. Zhao, K. Wang, W. Zhou, M. Kong, Y. Wang, F. Wang, J. Xiao, J. Yu. Demonstration of 73.15 Gbit/s 4096-QAM OFDM D-band wireless transmission employing probabilistic shaping and Volterra nonlinearity compensation. European Conference on Optical Communications (ECOC), 1(2020).

    [16] M. Kong, W. Zhou, J. Ding, W. Li, J. Yu. Simultaneous generation of wired and wireless signals using a DP-MZM in a RoF system. IEEE Photon. Technol. Lett., 32, 905(2020).

    [17] X. Li, J. Yu, J. Zhang, F. Li, J. Xiao. Antenna polarization diversity for 146 Gb/s polarization multiplexing QPSK wireless signal delivery at W-band. Optical Fiber Communication Conference (OFC), M3D.7(2014).

    [18] X. Li, J. Yu, J. Xiao. Demonstration of ultra-capacity wireless signal delivery at W-band. J. Light. Technol., 34, 180(2016).

    [19] F. Wang, J. Yu, Y. Wang, W. Li, B. Zhu, J. Ding, K. Wang, C. Liu, C. Wang, M. Kong, L. Zhao, F. Zhao, W. Zhou. Delivery of polarization-division-multiplexing wireless millimeter-wave signal over 4.6-km at W-band. J. Light. Technol., 40, 6339(2022).

    [20] Y. Wang, K. Wang, W. Zhou, J. Yu. Photonic aided vector millimeter-wave signal generation without digital-to-analog converter. Chin. Opt. Lett., 19, 011101(2021).

    [21] W. Li, M. Li, N. Zhu. Photonic generation of background-free millimeter-wave ultra-wideband signals (Invited Paper). Chin. Opt. Lett., 15, 010007(2017).

    [22] X. Li, J. Yu, G. -K. Chang. Photonics-aided millimeter-wave technologies for extreme mobile broadband communications in 5G. J. Light. Technol., 38, 366(2020).

    [23] C. Li, M. Wu, C. Lin, C. Lin. W-band OFDM RoF system with simple envelope detector down-conversion. Optical Fiber Communications Conference and Exhibition (OFC), 1(2015).

    [24] K. Wang, M. Zhao, M. Kong, J. Yu. Demonstration of 4 × 100 Gbit/s PAM-4 transmission over 40 km in an IM/DD system based on narrow band DMLs. IEEE Photon. J., 12, 7201908(2020).

    [25] J. Chen, L. Fang, Q. Zhang, J. Zhang, Y. Song, Y. Li, M. Wang. Experimental demonstration of 60 Gb/s optical OFDM transmissions at 1550 nm over 100 m OM1 MMF IMDD system with central launching. Chin. Opt. Lett., 15, 060603(2017).

    [26] P. Li, L. Zhu, X. Zhou, W. Pan, H. Zhang, N. Zhong, L. Yan. Constant-envelope OFDM for power-efficient and nonlinearity-tolerant heterodyne MMW-RoF system with envelope detection. J. Light. Technol., 40, 6882(2022).

    [27] M. Pessoa, J. S. Tavares, D. Coelho, H. M. Salgado. Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation. Opt. Express, 22, 17508(2014).

    [28] J. Wang, Z. Jia, L. A. Campos, C. Knittle. Delta-sigma modulation for next generation fronthaul interface. J. Light. Technol., 37, 2838(2019).

    [29] S. Luo, Z. Li, C. Fan, X. Zhu, K. Lv, Y. Song. Digital mobile fronthaul based on delta-sigma modulation employing a simple self-coherent receiver. Opt. Express, 30, 30684(2022).

    [30] J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Ma, G. Chang. Digital mobile fronthaul based on delta-sigma modulation for 32 LTE carrier aggregation and FBMC signals. J. Opt. Commun. Netw., 9, A233(2017).

    [31] F. Olofsson, L. Aabel, M. Karlsson, C. Fager. Comparison of transmitter nonlinearity impairments in externally modulated sigma-delta-over fiber vs analog radio-over-fiber links. Optical Fiber Communications Conference and Exhibition (OFC), 1(2022).

    [32] J. M. de la Rosa. Sigma-delta modulators: tutorial overview, design guide, and state-of-the-art survey. IEEE Trans. Circuits Syst. I: Regul. Pap., 58, 1(2011).

    [33] K. Bai, D. Zou, Z. Zhang, Z. Li, W. Wang, Q. Sui, Z. Cao, F. Li. Digital mobile fronthaul based on performance enhanced multi-stage noise-shaping delta-sigma modulator. J. Light. Technol., 39, 439(2021).

    [34]

    Data from CrossRef

    [1] Junting Shi, Jianjun Yu, Jiao Zhang, Min Zhu, Long Zhang, Jiaxuan Liu, Kaihui Wang, Wen Zhou. 4096-QAM OFDM THz-Over-Fiber MIMO Transmission Using Delta-Sigma Modulation. IEEE Photonics Technology Letters, 35, 741(2023).

    Zhou Ju, Jiaxuan Liu, Jianjun Yu. W-band radio-over-fiber transmission system with delta-sigma modulation and direct detection[J]. Chinese Optics Letters, 2023, 21(4): 040602
    Download Citation