• High Power Laser Science and Engineering
  • Vol. 10, Issue 4, 04000e23 (2022)
K. Li1、* and W. Yu2
Author Affiliations
  • 1Department of Physics, College of Science, Shantou University, Shantou515063, China
  • 2Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
  • show less
    DOI: 10.1017/hpl.2022.13 Cite this Article Set citation alerts
    K. Li, W. Yu. Parametric dependence of collisional heating of highly magnetized over-dense plasma by (far-)infrared lasers[J]. High Power Laser Science and Engineering, 2022, 10(4): 04000e23 Copy Citation Text show less

    Abstract

    Heating of over-dense plasma represents a long-standing quest in laser–plasma physics. When the strength of the magnetic field is above the critical value, a right-handed circularly polarized laser could propagate into and heat up the highly magnetized over-dense collisional plasma directly; the processes are dependent on the parameters of the laser, plasma and magnetic field. The parametric dependence is fully studied both qualitatively and quantitatively, resulting in scaling laws of the plasma temperature, heating depth and energy conversion efficiency. Such heating is also studied with the most powerful CO2 and strongest magnetic field in the world, where plasma with density of ${10}^{23}$ cm–3 and initial temperature of 1 keV is heated to around 10 keV within a depth of several micrometres. Several novel phenomena are also discovered and discussed, that is, local heating in the region of high density, low temperature or weak magnetic field.
    $$\begin{align}\varepsilon =1+\frac{n}{B-1- i\nu},\end{align}$$ ((1))

    View in Article

    $$\begin{align}k&=\sqrt{\varepsilon}={k}_{\mathrm{r}}+{ik}_{\mathrm{i}}\approx {\left(1+\frac{n}{B-1}\right)}^{1/2} \nonumber \\[5pt] &\quad +\frac{i}{2}\frac{n\nu}{{\left(B-1\right)}^2}{\left(\frac{1}{1+n/\left(B-1\right)}\right)}^{1/2},\end{align}$$ ((2))

    View in Article

    $$\begin{align}{k}_{\mathrm{L}} &={k}_{\mathrm{r}}+{ik}_{\mathrm{i}}\approx {\left(\frac{n_1}{B_1}\cdot \frac{\lambda_{\mathrm{L}}}{\lambda_1}\right)}^{1/2} \nonumber \\[4pt] &\quad +i\cdot 0.86\;(\ln\;\Lambda) Z{\left(\frac{n_1}{B_1{T}_{\mathrm{eV}}}\right)}^{3/2}\frac{\lambda_{\mathrm{L}}^{1/2}}{\lambda_1^{3/2}},\end{align}$$ ((3))

    View in Article

    $$\begin{align}\textrm{Trans}.=\frac{4{k}_{\mathrm{r}}}{{\left(1+{k}_{\mathrm{r}}\right)}^2}\approx 4{\left(\frac{B}{n}\right)}^{1/2}=4{\left(\frac{B_1}{n_1}\cdot \frac{\lambda_1}{\lambda_{\mathrm{L}}}\right)}^{1/2}.\end{align}$$ ((4))

    View in Article

    $$\begin{align}{L}_{\alpha, {\lambda}_{\mathrm{L}}}={\left(2{k}_{\mathrm{L}}{k}_{\mathrm{i}}\right)}^{-1}\approx 0.1\;(\ln\;{\Lambda})^{-1}{Z}^{-1}{\lambda}_1^{3/2}{\lambda}_{\mathrm{L}}^{1/2}{\left(\frac{B_1{T}_{\mathrm{eV}}}{n_1}\right)}^{3/2}.\end{align}$$ ((5))

    View in Article

    $$\begin{align}{\boldsymbol{a}}_1=t\cdot {a}_0\cdot {e}^{ikz-t}\left(\overrightarrow{x}+i\overrightarrow{y}\right),\end{align}$$ ((6))

    View in Article

    $$\begin{align}{\boldsymbol{u}}_{\mathrm{t}}=\frac{{\boldsymbol{a}}_1}{1-B+ i\nu}.\end{align}$$ ((7))

    View in Article

    $$\begin{align}{\partial}_{\mathrm{t}}\left({w}_{\mathrm{P}}+{w}_{\mathrm{L}}\right)=-\nabla \cdot {\boldsymbol{S}}_{\mathrm{t}}-\mathit{\operatorname{Im}}\left({\boldsymbol{J}}_{\mathrm{t}}\cdot {\boldsymbol{E}}_{\mathrm{t}}\right),\end{align}$$ ((8))

    View in Article

    $$\begin{align}{d}_{\mu \mathrm{m}}\approx 120\cdot {T}_0{\left(\mathrm{keV}\right)}^{0.93}.\end{align}$$ ((9))

    View in Article

    $$\begin{align}{T}_{\mathrm{b},\mathrm{keV}}\approx 1.15\cdot {\left({I}_{14}\cdot {\tau}_{\mathrm{ns}}\right)}^{0.4}\cdot {\left({B}_0/{10}^5\right)}^{-0.55}\cdot {\lambda}_{\mu \mathrm{m}}^{-0.75},\end{align}$$ ((10))

    View in Article

    $$\begin{align}{d}_{\mu \mathrm{m}} &\approx \left(15+7.7\log \left({I}_{14}\cdot {t}_{\mathrm{ns}}\right) +10\log \left({\lambda}_{\mu \mathrm{m}}\right)\right) \nonumber \\ &\quad \cdot {\left({B}_0/{10}^5\right)}^{1.37}\cdot {n}_{23}^{-1.53},\end{align}$$ ((11))

    View in Article

    $$\begin{align}{\eta}_{\mathrm{L}\to \mathrm{P}}&=\frac{W_{\mathrm{p}}}{W_{\mathrm{L}}}=\left({\int}_0^{\mathrm{z}_{\mathrm{max}}}3{n}_{\mathrm{e}}\Delta T\textrm{d}z\right) \cdot {\left({I}_{\mathrm{L}}\tau \right)}^{-1} \nonumber \\ &\quad \approx 0.048{n}_{23}\frac{\left({T}_{\mathrm{b},\mathrm{keV}}-{T}_{0,\mathrm{keV}}\right){d}_{\mu \mathrm{m}}}{I_{14}{\tau}_{\mathrm{ns}}}.\end{align}$$ ((12))

    View in Article

    $$\begin{align}{\eta}_{\mathrm{L}\to \mathrm{P}} &\approx 0.055\cdot {\left({B}_0/{10}^5\right)}^{0.82} \nonumber \\ &\quad \cdot \frac{15+3.33\log \left({I}_{14}{\tau}_{\mathrm{ns}}\right)+10\log \left({\lambda}_{\mu \mathrm{m}}\right)}{{\left({I}_{14}{\tau}_{\mathrm{ns}}\right)}^{0.6}{n}_{23}^{0.53}{\lambda}_{\mu \mathrm{m}}^{0.75}}.\end{align}$$ ((13))

    View in Article

    K. Li, W. Yu. Parametric dependence of collisional heating of highly magnetized over-dense plasma by (far-)infrared lasers[J]. High Power Laser Science and Engineering, 2022, 10(4): 04000e23
    Download Citation