• Photonics Research
  • Vol. 12, Issue 8, A63 (2024)
Xinrui Zhu1,†, Yaowen Hu1,2,†, Shengyuan Lu1, Hana K. Warner1..., Xudong Li1, Yunxiang Song1, Letícia Magalhães1, Amirhassan Shams-Ansari1,3, Andrea Cordaro1, Neil Sinclair1 and Marko Lončar1,*|Show fewer author(s)
Author Affiliations
  • 1John A. Paulson School for Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
  • 2State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
  • 3DRS Daylight Solutions, San Diego, California 92127, USA
  • show less
    DOI: 10.1364/PRJ.521172 Cite this Article Set citation alerts
    Xinrui Zhu, Yaowen Hu, Shengyuan Lu, Hana K. Warner, Xudong Li, Yunxiang Song, Letícia Magalhães, Amirhassan Shams-Ansari, Andrea Cordaro, Neil Sinclair, Marko Lončar, "Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate," Photonics Res. 12, A63 (2024) Copy Citation Text show less
    References

    [1] D. Zhu, L. Shao, M. Yu. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [2] R. S. Weis, T. K. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191-203(1985).

    [3] M. Zhang, C. Wang, R. Cheng. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [4] C. Wang, M. Zhang, X. Chen. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [5] M. Y. Xu, Y. Zhu, F. Pittalà. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica, 9, 61-62(2022).

    [6] Y. Hu, D. Zhu, S. Lu. Integrated electro-optics on thin-film lithium niobate. arXiv(2024).

    [7] Y. Hu, M. Yu, D. Zhu. On-chip electro-optic frequency shifters and beam splitters. Nature, 599, 587-593(2021).

    [8] M. Zhang, B. Buscaino, C. Wang. Broadband electro-optic frequency comb generation in an integrated microring resonator. Nature, 568, 373-377(2019).

    [9] Y. Hu, M. Yu, B. Buscaino. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photonics, 16, 679-685(2022).

    [10] M. Yu, M. Lipson, T. J. Kippenberg. Chip-based lithium-niobate frequency combs. IEEE Photonics Technol. Lett., 31, 1894-1897(2019).

    [11] C. Wang, M. Zhang, M. Yu. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [12] Z. Lin, Z. Kang, P. Xu. Turnkey generation of Kerr soliton microcombs on thin-film lithium niobate on insulator microresonators powered by the photorefractive effect. Opt. Express, 29, 42932-42944(2021).

    [13] Y. He, Q. F. Yang, J. Ling. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).

    [14] Z. Gong, X. Liu, Y. Xu. Near-octave lithium niobate soliton microcomb. Optica, 7, 1275-1278(2020).

    [15] Y. Song, Y. Hu, M. Lončar. Hybrid Kerr-electro-optic frequency combs on thin-film lithium niobate. arXiv(2024).

    [16] Y. Song, Y. Hu, X. Zhu. Octave-spanning Kerr soliton microcombs on thin-film lithium niobate. arXiv(2024).

    [17] R. Cheng, M. Yu, A. Shams-Ansari. On-chip synchronous pumped χ(3) optical parametric oscillator on thin-film lithium niobate. arXiv(2023).

    [18] Y. Hu, C. Reimer, A. Shams-Ansari. Realization of high-dimensional frequency crystals in electro-optic microcombs. Optica, 7, 1189-1194(2020).

    [19] Y. Hu, M. Yu, N. Sinclair. Mirror-induced reflection in the frequency domain. Nat. Commun., 13, 6293(2022).

    [20] U. A. Javid, R. Lopez-Rios, J. Ling. Chip-scale simulations in a quantum-correlated synthetic space. Nat. Photonics, 17, 883-890(2023).

    [21] J. Holzgrafe, N. Sinclair, D. Zhu. Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica, 7, 1714-1720(2020).

    [22] T. P. McKenna, J. D. Witmer, R. N. Patel. Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica, 7, 1737-1745(2020).

    [23] Y. Xu, A. A. Sayem, L. Fan. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun., 12, 4453(2021).

    [24] W. Jiang, C. J. Sarabalis, Y. D. Dahmani. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun., 11, 1166(2020).

    [25] H. K. Warner, J. Holzgrafe, B. Yankelevich. Coherent control OFA superconducting qubit using light. arXiv(2023).

    [26] J. Zhao, C. Ma, M. Rüsing. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [27] A. Rao, K. Abdelsalam, T. Sjaardema. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W-1 cm-2. Opt. Express, 27, 25920-25930(2019).

    [28] C. J. Xin, S. Lu, J. Yang. Wavelength-accurate and wafer-scale process for nonlinear frequency mixers in thin-film lithium niobate. arXiv(2024).

    [29] P. K. Chen, I. Briggs, C. Cui. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat. Nanotechnol., 19, 44-50(2024).

    [30] X. Li, H. Li, Z. Wang. Advancing large-scale thin-film PPLN nonlinear photonics with segmented tunable micro-heaters. arXiv(2024).

    [31] S. J. B. Yoo. Wavelength conversion technologies for WDM network applications. J. Lightwave Technol., 14, 955-966(1996).

    [32] G. Wetzstein, A. Ozcan, S. Gigan. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [33] L. Chang, S. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nat. Photonics, 16, 95-108(2022).

    [34] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Laser Photonics Rev., 7, 506-538(2013).

    [35] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [36] J. Wang, F. Sciarrino, A. Laing. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2019).

    [37] C. C. Wei, J. Li, Q. Jia. Ultrahigh-Q lithium niobate microring resonator with multimode waveguide. Opt. Lett., 48, 2465-2467(2023).

    [38] Y. Gao, F. Lei, M. Girardi. Compact lithium niobate microring resonators in the ultrahigh Q/V regime. Opt. Lett., 48, 3949-3952(2023).

    [39] G. Ulliac, V. Calero, A. Ndao. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application. Opt. Mater., 53, 1-5(2016).

    [40] K. Prabhakar, R. M. Reano. Fabrication of low loss lithium niobate rib waveguides through photoresist reflow. IEEE Photonics J., 14, 6660808(2022).

    [41] K. Luke, P. Kharel, C. Reimer. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).

    [42] A. Kozlov, D. Moskalev, U. Salgaeva. Reactive ion etching of X-cut LiNbO3 in an ICP/TCP system for the fabrication of an optical ridge waveguide. Appl. Sci., 13, 2097(2023).

    [43] F. Kaufmann, G. Finco, A. Maeder. Redeposition-free inductively-coupled plasma etching of lithium niobate for integrated photonics. Nanophotonics, 12, 1601-1611(2023).

    [44] R. J. Zhuang, J. He, Y. Qi. High-Q thin-film lithium niobate microrings fabricated with wet etching. Adv. Mater., 35, 2208113(2023).

    [45] F. Yang, X. Fang, X. Chen. Monolithic thin film lithium niobate electro-optic modulator with over 110 GHz bandwidth. Chin. Opt. Lett., 20, 022502(2022).

    [46] R. H. Gao, N. Yao, J. Guan. Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett., 20, 011902(2022).

    [47] J. H. Zhang, R. Wu, M. Wang. An ultra-high-Q lithium niobate microresonator integrated with a silicon nitride waveguide in the vertical configuration for evanescent light coupling. Micromachines, 12, 235(2021).

    [48] C. Li, J. Guan, J. Lin. Ultra-high Q lithium niobate microring monolithically fabricated by photolithography assisted chemo-mechanical etching. Opt. Express, 31, 31556-31562(2023).

    [49] A. Shams-Ansari, G. Huang, L. He. Reduced material loss in thin-film lithium niobate waveguides. APL Photonics, 7, 081301(2022).

    [50] M. W. Puckett, K. Liu, N. Chauhan. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun., 12, 934(2021).

    [51] G. Moille, Q. Li, T. C. Briles. Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. Opt. Lett., 44, 4737-4740(2019).

    [52] L. Zhang, L. Jie, M. Zhang. Ultrahigh-Q silicon racetrack resonators. Photonics Res., 8, 684-689(2020).

    [53] M. H. P. Pfeiffer, J. Liu, M. Geiselmann. Coupling ideality of integrated planar high-Q microresonators. Phys. Rev. Appl., 7, 024026(2017).

    [54] J. S. Fandiño, P. Muñoz, D. Doménech. A monolithic integrated photonic microwave filter. Nat. Photonics, 11, 124-129(2016).

    [55] E. Pelucchi, G. Fagas, I. Aharonovich. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys., 4, 194-208(2021).

    [56] J. L. O’Brien, A. Furusawa, J. Vučković. Photonic quantum technologies. Nat. Photonics, 3, 687-695(2009).

    [57] M. G. Vazimali, S. Fathpour. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics, 4, 034001(2022).

    [58] G. Chen, N. Li, J. D. Ng. Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics, 4, 034003(2022).

    Xinrui Zhu, Yaowen Hu, Shengyuan Lu, Hana K. Warner, Xudong Li, Yunxiang Song, Letícia Magalhães, Amirhassan Shams-Ansari, Andrea Cordaro, Neil Sinclair, Marko Lončar, "Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate," Photonics Res. 12, A63 (2024)
    Download Citation