• Journal of Advanced Dielectrics
  • Vol. 11, Issue 1, 2150008 (2021)
T. Amutha1、* and K. Jacinth Mispa2
Author Affiliations
  • 1Aditanar College of Arts and Science, Tiruchendur-628 216, Affiliating to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India
  • 2Department of Chemistry, Aditanar College of Arts and Science, Tiruchendur-628 216, Affiliating to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India
  • show less
    DOI: 10.1142/S2010135X21500089 Cite this Article
    T. Amutha, K. Jacinth Mispa. Synthesis of novel PANI-based Ti(IV) phosphosulphosalicylate composite cation exchanger — structural, electrical, and impedance properties[J]. Journal of Advanced Dielectrics, 2021, 11(1): 2150008 Copy Citation Text show less
    References

    [1] A. A. Khan, Inamuddin , M. M. Alam. Preparation, characterization and analytical applications of a new and novel electrically conducting fibrous type polymeric-inorganic composite material: Polypyrrole Th(IV) phosphate used as a cation-exchanger and Pb(II) ion-selective membrane electrode. Mater. Res. Bull., 40, 289(2004). https://doi.org/10.1016/j.materresbull.2004.10.014

    [2] E. Detsri, S. T. Dubas. Interfacial polymerization of polyaniline and its layer-by-layer assembly into polyelectrolytes multilayer thin-films. J. Appl. Polym. Sci., 128, 558(2013). https://doi.org/10.1002/app.38168

    [3] A. Kaur, A. Kaur, D. Saini. A review on synthesis of silica nanocomposites with conducting polymers: Polyaniline. Int. J. Eng. Sci., 18, 40(2016).

    [4] Z. M. Tahir, E. C. Alocilja, D. L. Grooms. Polyaniline synthesis and its biosensor application. Biosens. Bioelectron., 20, 1690(2005). https://doi.org/10.1016/j.bios.2004.08.008

    [5] K. Lakshmi, H. John, K. T. Mathew, R. Joseph, K. E. George. Microwave absorption, reflection and EMI shielding of PU–PANI composite. Acta Mater., 57, 371(2009). https://doi.org/10.1016/j.actamat.2008.09.018

    [6] A. A. Khan, A. Khan. Electrical conductivity and cation exchange kinetic studies on poly-o-toluidine Th(IV) phosphate nano-composite cation exchange material. Talanta, 73, 850(2007). https://doi.org/10.1016/j.talanta.2007.05.003

    [7] R. Murugesan, E. Subramanian. Charge dynamics in conducting polyaniline–metal oxalate composites. Bull. Mater. Sci., 26, 529(2003). https://doi.org/10.1007/BF02707352

    [8] Y. Jin, M. Jia. Preparation and electrochemical capacitive performance of polyaniline nanofiber-graphene oxide hybrids by oil–water interfacial polymerization. Synth. Met., 189, 47(2014). https://doi.org/10.1016/j.synthmet.2013.12.016

    [9] C. Bora, A. Kalita, D. Das, S. K. Dolui, P. Kr. Mukhopadhyay. Preparation of polyaniline/nickel oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their electrical, electrochemical and magnetic properties. Polym. Int., 63, 445(2013). https://doi.org/10.1002/pi.4522

    [10] J. G. Wang, Y. Yang, Z. H. Huang, F. Kang. Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. J. Power Sources, 204, 236(2012). https://doi.org/10.1016/j.jpowsour.2011.12.057

    [11] G. D. Khuspe, S. T. Navale, M. A. Chougule, S. Sen, G. L. Agawane, J. H. Kim, V. B. Patil. Facile method of synthesis of polyaniline-SnO2 hybrid nanocomposites: Microstructural, optical and electrical transport properties. Synth. Met., 178, 1(2013). https://doi.org/10.1016/j.synthmet.2013.06.022

    [12] A. Katoch, M. Burkhart, T. Hwang, S. S. Kim. Synthesis of polyaniline/TiO2 hybrid nanoplates via a sol–gel chemical method. Chem. Eng. J., 192, 262(2012). https://doi.org/10.1016/j.cej.2012.04.004

    [13] A. A. Khan, T. Akhtar. Preparation, physico-chemical characterization and electrical conductivity measurement studies of an organic–inorganic nanocomposite cation-exchanger: Poly-o-toluidine Zr(IV) phosphate. Electrochim. Acta, 53, 5540(2008). https://doi.org/10.1016/j.electacta.2008.03.002

    [14] A. A. Khan, Inamuddin . Preparation, physico-chemical characterization, analytical applications and electrical conductivity measurement studies of an ‘organic–inorganic’ composite cation-exchanger: Polyaniline Sn(IV) phosphate. React. Funct. Polym., 66, 1649(2006). https://doi.org/10.1016/j.reactfunctpolym.2006.06.007

    [15] A. A. Khan, A. Khan, Inamuddin . Preparation and characterization of a new organic–inorganic nano-composite poly-o-toluidine Th(IV) phosphate: Its analytical applications as cation-exchanger and in making ion-selective electrode. Talanta, 72, 699(2007). https://doi.org/10.1016/j.talanta.2006.11.044

    [16] S. Carrara, V. Bavastrello, D. Ricci, E. Stura, C. Nicolini. Improved nanocomposite materials for biosensor applications investigated by electrochemical impedance spectroscopy. Sens. Actuators B, 109, 221(2005). https://doi.org/10.1016/j.snb.2004.12.053

    [17] Mu. Naushad, Z. A. Al-Othman, M. Islam. Adsorption of cadmium ion using a new composite cation-exchanger polyaniline Sn(IV) silicate: Kinetics, thermodynamic and isotherm studies. Int. J. Environ. Sci. Technol., 10, 567(2013). https://doi.org/10.1007/s13762-013-0189-0

    [18] Z. A. Al-Othman, Mu. Naushad, A. Nilchi. Development, characterization and ion exchange thermodynamics for a new crystalline composite cation exchange material: Application for the removal of Pb2+ ion from a standard sample (Rompin Hematite). J. Inorg. Organomet. Polym., 21, 547(2011). https://doi.org/10.1007/s10904-011-9491-9

    [19] R. Thomas. Synthesis, properties and analytical applications of Titanium (IV) phosphosulphosalicylate - A new hybrid inorganic-organic ion-exchanger. Orient. J. Chem., 24, 139(2008).

    [20] M. Shahadat, T. T. Teng, M. Rafatullah, M. Arshad. Titanium-based nanocomposite materials: A review of recent advances and perspectives. Colloids Surf. B, 126, 121(2015). https://doi.org/10.1016/j.colsurfb.2014.11.049

    [21] D. K. Singh, S. Singh. Synthesis, characterization and analytical applications of zirconium(IV) sulphosalicylophosphate. Indian J. Chem. Technol., 11, 23(2004).

    [22] G. D. Prasanna, H. S. Jayanna. In situ synthesis, characterization and frequency dependent AC conductivity of polyaniline/CoFe2O4 nanocomposites. J. Adv. Dielectr., 1, 357(2011). https://doi.org/10.1142/s2010135x11000434

    [23] A. Khan, A. M. Asiri, M. A. Rub, N. Azum, A. A. P. Khan, S. B. Khan, M. M. Rahman, I. Khan. Synthesis, characterization of silver nanoparticle embedded polyaniline tungstophosphate-nanocomposite cation exchanger and its application for heavy metal selective membrane. Compos. Part B, 45, 1486(2013). https://doi.org/10.1016/j.compositesb.2012.09.023

    [24] M. Khairy, R. Kamal, N. H. Amin, M. A. Mousa. Kinetics and isotherm studies of Remazol Red adsorption onto polyaniline/cerium oxide nanocomposites. J. Bas. Environ. Sci., 3, 123(2016).

    [25] H. P. Klug, L. E. Alexander. X-Ray Diffraction Procedures(1974).

    [26] B. D. Cullity. Elements of X-ray Diffraction(1978).

    [27] B. P. Prasanna, D. N. Avadhani, H. B. Muralidhara, K. Chaitra, V. R. Thomas, M. Revanasiddappa, N. Kathyayini. Synthesis of polyaniline/ZrO2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance. Bull. Mater. Sci., 39, 667(2016). https://doi.org/10.1007/s12034-016-1196-9

    [28] P. Mannu, M. Palanisamy, G. Bangaru, S. Ramakrishnan, A. Kandasami, P. Kumar. Temperaturedependent AC conductivity and dielectric and impedance properties of ternary In–Te–Se nanocomposite thin films. Appl. Phys. A., 458, 125(2019). https://doi.org/10.1007/s00339-019-2751-1

    [29] P. S. P. Ranjini, V. S. John, R. Murugesan. Synthesis, characterization and anti-microbial activities on polyaniline-CdTiO3 nanocomposite. J. Pharm. Chem. Biol. Sci., 5, 221(2017).

    [30] H. K. Dubey, P. Lahiri. Synthesis, structural, dielectric and magnetic properties of Cd2+ based Mn nanosized ferrites. Mater.Technol., 36, 131(2020).

    [31] K. J. Mispa, P. Subramaniam, R. Murugesan. Studies on polyaniline/ silver molybdate nanocomposites. Int. J. Nanosci., 13, 1450002(2014).

    [32] K. J. Mispa, P. Subramaniam, R. Murugesan. Oxidative polymerization of Aniline using Zirconium Vanadate, a novel Polyaniline hybrid ion exchanger. Des. Monomers Polym., 14, 423(2011). https://doi.org/10.1163/138577211X587627

    [33] L. Ding, X. Wang, R. V. Gregory. Thermal properties of chemically synthesized polyaniline EB powder. Synth. Met., 104, 73(1999). https://doi.org/10.1016/s0379-6779(99)00035-1

    [34] Z. A. Al. Othman, M. M. Alam, Mu. Naushad, R. Bushra. Electrical conductivity and thermal stability on polyaniline Sn(IV) tungstomolybdate nanocomposite cation-exchange material: Application as Pb(II) ion-selective membrane electrode. Int. J. Electrochem. Sci., 10, 2663(2015).

    [35] G. Sharma, D. Pathania, Mu. Naushad. Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium(IV) selenotungstophosphate for the separation of toxic metal ions. Ionics, 21, 1045(2015). https://doi.org/10.1007/s11581-014-1269-y

    [36] S. Palsaniya, H. B. Nemade, A. K. Dasmahapatra. Graphene based PANI/MnO2 nanocomposites with enhanced dielectric properties for high energy density materials. Carbon, 150, 179(2019). https://doi.org/10.1016/j.carbon.2019.05.006

    [37] H. K. Inamdar, M. Sasikala, S. B. Chakradhar, B. Sannakki, M. V. N. Ambikaprasad. AC conductivity studies of polyaniline/CuO composites. Indian J. Sci. Res., 17, 30(2017).

    [38] V. Kathiravan, G. Satheesh Kumar, S. Pari, P. Selvarajan. Influence of dye doping on the structural, spectral, optical, thermal, mechanical and nonlinear optical properties of L-Histidine hydrofluoride dehydrate crystals. J. Mol. Struct., 1223, 128958(2020). https://doi.org/10.1016/j.molstruc.2020.128958

    [39] J. Hazarika, A. Kumar. Electric modulus based relaxation dynamics and ac conductivity scaling of polypyrrole nanotubes. Synth. Met., 198, 239(2014). https://doi.org/10.1016/j.synthmet.2014.10.009

    [40] K. S. Hemalatha, G. Sriprakash, M. V. N. Ambikaprasad, R. Damle, K. Rukmani. Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposites films by impedance spectroscopy. J. Appl. Phys., 118, 154103(2015). https://doi.org/10.1063/1.4933286

    [41] H. Gul, A. A. Shah, U. Krewer, S. Bilar. Study on direct synthesis of energy efficient multifunctional polyaniline–graphene oxide nanocomposite and its application in aqueous symmetric supercapacitor devices. Nanomaterials, 10, 118(2020). https://doi.org/10.3390/nano10010118

    [42] K. Shen, F. Ran, X. Zhang, C. Liu, N. Wang, X. Niu, Y. Liu, D. Zhang, L. Kong, L. Kang, S. Chen. Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers. Synth. Met., 209, 369(2015). https://doi.org/10.1016/j.synthmet.2015.08.012

    T. Amutha, K. Jacinth Mispa. Synthesis of novel PANI-based Ti(IV) phosphosulphosalicylate composite cation exchanger — structural, electrical, and impedance properties[J]. Journal of Advanced Dielectrics, 2021, 11(1): 2150008
    Download Citation