• High Power Laser and Particle Beams
  • Vol. 33, Issue 11, 111007 (2021)
Adewale Akinyimika1、2、3, Yulei Wang1、2、*, Zhenxu Bai1、2, Yunfei Li1、2, and Zhiwei Lu1、2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Hebei University of Technology, Tianjin 300401, China
  • 3Department of Physics, Federal University of Technology Akure, P. M. B 704 Akure, Nigeria
  • show less
    DOI: 10.11884/HPLPB202133.210313 Cite this Article
    Adewale Akinyimika, Yulei Wang, Zhenxu Bai, Yunfei Li, Zhiwei Lu. Phase conjugation lasers based on stimulated Brillouin scattering with high-power and high-energy[J]. High Power Laser and Particle Beams, 2021, 33(11): 111007 Copy Citation Text show less
    References

    [1] González M, Stehlé C, Audit E, et al. Astrophysical radiative shocks: from modeling to laboratory experiments[J]. Laser and Particle Beams, 24, 535-540(2006).

    [2] Liu Jianxun, Ma Yanyun, Yang Xiaohu, et al. High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 19, 015001(2017).

    [3] Yang Yue, Zhao Zongqing, Zheng Jianhua, et al. Production of bright high-energy X-rays based on interaction of laser and near-critical-density plasma[J]. High Power Laser and Particle Beams, 29, 082003(2017).

    [4] Santos J J, Bailly-Grandvaux M, Ehret M, et al. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics[J]. Physics of Plasmas, 25, 056705(2018).

    [5] Li Hanzhen, Yu Tongpu, Hu Lixiang, et al. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target[J]. Optics Express, 25, 21583-21593(2017).

    [6] Magnusson J, Gonoskov A, Marklund M. Energy partitioning and electron momentum distributions in intense laser-solid interactions[J]. The European Physical Journal D, 71, 231(2017).

    [7] Kluge T, Rödel M, Metzkes-Ng J, et al. Observation of ultrafast solid-density plasma dynamics using femtosecond X-ray pulses from a free-electron laser[J]. Physical Review X, 8, 031068(2018).

    [8] Li Yanfei, Shaisultanov R, Chen Yueyue, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 124, 014801(2020).

    [9] Xue Kun, Dou Zhenke, Wan Feng, et al. Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction[J]. Matter and Radiation at Extremes, 5, 054402(2020).

    [10] Hoffmann D H H, Blazevic A, Ni P, et al. Present and future perspectives for high energy density physics with intense heavy ion and laser beams[J]. Laser and Particle Beams, 23, 47-53(2005).

    [11] Hu Yanting, Zhao Jie, Zhang Hao, et al. Attosecond γ-ray vortex generation in near-critical-density plasma driven by twisted laser pulses[J]. Applied Physics Letters, 118, 054101(2021).

    [12] Weichman K, Robinson A P L, Murakami M, et al. Strong surface magnetic field generation in relativistic short pulse laser–plasma interaction with an applied seed magnetic field[J]. New Journal of Physics, 22, 113009(2020).

    [13] Rosmej O N, Gyrdymov M, Günther M M, et al. High-current laser-driven beams of relativistic electrons for high energy density research[J]. Plasma Physics and Controlled Fusion, 62, 115024(2020).

    [14] Domański J, Badziak J. Generation of ion beams from high-Z target irradiated by laser pulse of ultra-relativistic intensity[J]. Acta Physica Polonica A, 138, 586-592(2020).

    [15] Liang Zhenfeng, Shen Baifei, Zhang Xiaomei, et al. High-repetition-rate few-attosecond high-quality electron beams generated from crystals driven by intense X-ray laser[J]. Matter and Radiation at Extremes, 5, 054401(2020).

    [16] Domański J, Badziak J. Properties of heavy ion beams produced by a PW sub-picosecond laser[J]. Journal of Instrumentation, 15, C05037(2020).

    [17] Frost M, Curry C B, Glenzer S H. Laser cutting apparatus for high energy density and diamond anvil cell science[J]. Journal of Instrumentation, 15, P05004(2020).

    [18] Kumar S, Park J, Nam S H, et al. Laser-induced plasma generated by a 532 nm pulsed laser in bulk water: unexpected line-intensity variation with water temperature and the possible underlying physics[J]. Plasma Science and Technology, 22, 074009(2020).

    [19] Savelyev M S, Agafonova N O, Vasilevsky P N, et al. Effects of pulsed and continuous-wave laser radiation on the fabrication of tissue-engineered composite structures[J]. Optical Engineering, 59, 061623(2020).

    [20] Zhu Chenguang, Zhao Dongmei, Wang Kedian, et al. Direct laser writing of graphene films from a polyether ether ketone precursor[J]. Journal of Materials Science, 54, 4192-4201(2019).

    [21] Luo Dan, Liu Ying, Li Xiangyu, et al. Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 20, 075504(2018).

    [22] Bibeau C, Bayramian A, Beach R J, et al. Mercury and beyond: diode-pumped solid-state lasers for inertial fusion energy[J]. Comptes Rendus de l'Académie des Sciences-Series IV-Physics, 1, 745-749(2000).

    [23] Kawashima T, Kanabe T, Matsui H, et al. Design and performance of a diode-pumped Nd: silica-phosphate glass Zig-Zag slab laser amplifier for inertial fusion energy[J]. Japanese Journal of Applied Physics, 40, 6415-6425(2001).

    [24] Zel’Dovich B Y, Popovichev V I, Ragulskii V V, et al. Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam–Brillouin scattering[J]. JETP Letters, 15, 109-112(1972).

    [25] Wang Hongli, Cha S, Kong Hongjin, et al. Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation[J]. Optics Express, 27, 9895-9905(2019).

    [26] Kang Zhijun, Fan Zhongwei, Huang Yutao, et al. High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM[J]. Optics Express, 26, 6560-6571(2018).

    [27] Tang Xiongxin, Qiu Jisi, Fan Zhongwei, et al. Experimental study on SBS-PCM at 200 Hz repetition rate pumped with joule-level energy[J]. Optical Materials, 67, 64-69(2017).

    [28] Omatsu T, Kong H J, Park S, et al. The current trends in SBS and phase conjugation[J]. Laser and Particle Beams, 30, 117-174(2012).

    [29] Shin J S, Park S, Kong H J. Compensation of the thermally induced depolarization in a double-pass Nd: YAG rod amplifier with a stimulated Brillouin scattering phase conjugate mirror[J]. Optics Communications, 283, 2402-2405(2010).

    [30] Zhang Ying, Ke Xizheng, Chen Mingsha. Simulation experiment of wavefront distortion correction in stimulated Brillouin scattering[J]. Infrared and Laser Engineering, 47, 1122001(2018).

    [31] Raab V, Heuer A, Schultheiss J, et al. Transverse effects in phase conjugate laser mirrors based on stimulated Brillouin scattering[J]. Chaos, Solitons & Fractals, 10, 831-838(1999).

    [32] Lamb R A, Damzen M J. Phase locking of multiple stimulated Brillouin scattering by a phase-conjugate laser resonator[J]. Journal of the Optical Society of America B, 13, 1468-1472(1996).

    [33] Chen Xudong, Chang Chengcheng, Pu Jixiong. Stimulated Brillouin scattering phase conjugation of light beams carrying orbit angular momentum (Invited Paper)[J]. Chinese Optics Letters, 15, 030006(2017).

    [34] Qiu Jisi, Tang Xiongxin, Fan Zhongwei, et al. High repetition rate and high beam quality joule level Nd: YAG nanosecond laser for Thomson scattering diagnosis[J]. Acta Physica Sinica, 65, 154204(2016).

    [35] Fan Zhongwei, Qiu Jisi, Tang Xiongxin, et al. A 100 Hz 3.31 J all-solid-state high beam quality Nd: YAG laser for space debris detecting[J]. Acta Physica Sinica, 66, 054205(2017).

    [36] Zhu Xuehua, Wu Daohua, Wang Guanling, et al. High efficiency laser spatial beam smoothing based on stimulated Brillouin scattering[J]. Laser Physics, 29, 065402(2019).

    [37] Kmetik V, Yoshida H, Fujita H, et al. Very high energy SBS phase conjugation pulse compression in fluocarbon liquids[C]. Proc. SPIE: Advanced HighPower Lasers, 2000, 3889: 818826.

    [38] Tsubakimoto K, Yoshida H, Miyanaga N. High-average-power green laser using Nd: YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror[J]. Optics Express, 24, 12557-12564(2016).

    [39] Qiu Jisi, Tang Xiongxin, Fan Zhongwei, et al. 200 Hz repetition frequency joule-level high beam quality Nd: YAG nanosecond laser[J]. Optics Communications, 368, 68-72(2016).

    [40] Park S, Cha S, Oh J, et al. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation[J]. Optics Express, 24, 8641-8646(2016).

    [41] Yoshida H, Tsubakimoto K, Fujita H, et al. StimulatedBrillouinscattering via phaseconjugationmirr f highaveragepower Nd: YAG laser systems[C]Proceedings of 2011 Conference on Lasers ElectroOptics Europe 12th European Quantum Electronics Conference (CLEO EUROPEEQEC). IEEE, 2011.

    [42] Yoshida H, Nakatsuka M, Hatae T, et al. YAG laser perfomance improved by stimulated Brillouin scattering phase conjugation mirror in Thomson scattering diagnostics at JT-60[J]. Japanese Journal of Applied Physics, 42, 439-442(2003).

    [43] Knev A F, Makarov A M, Katsev Y V, et al. 2 Joule 10 Hz flashlamppumped 1047 nm Nd: YLF laser with neardiffractionlimited beam quality[C]Proceedings of 2020 International Conference Laser Optics (ICLO). IEEE, 2020.

    [44] Wang Jianlei, Zhao Kaiqi, Feng Tao, et al. 1.5 J high-beam-quality Nd: LuAG ceramic active mirror laser amplifier[J]. Chinese Optics Letters, 18, 021401(2020).

    [45] Jaberi M, Farahbod A H, Soleimani H R. Effect of pump mode structure on reflectance of SBS mirrors[J]. Optical and Quantum Electronics, 49, 53(2017).

    [46] Ding Jianyong, Yu Guangli, Fang Chunqi, et al. High beam quality of nanosecond Nd: YAG slab laser system with SBS-PCM[J]. Optics Communications, 475, 126273(2020).

    [47] Brignon A, Huignard J P. Phase conjugate laser optics[M]. Hoboken: John Wiley & Sons, 2004.

    [48] Fisher R A. Optical phase conjugation[M]. New Yk: Academic Press, 1983.

    [49] Hasi W L J, Lu Z W, Gong S, et al. Investigation of stimulated Brillouin scattering media perfluoro-compound and perfluoropolyether with a low absorption coefficient and high power-load ability[J]. Applied Optics, 47, 1010-1014(2008).

    [50] Guo X Y, Hasi W L J, Zhong Z M, et al. Research on the SBS mediums used in high peak power laser system and their selection principle[J]. Laser and Particle Beams, 30, 525-530(2012).

    [51] Wang Y L, Lu Z W, Li Y, et al. Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror[J]. Applied Physics B, 98, 391-395(2010).

    [52] Gao Yue, Wang Yanjie, Chan A, et al. High average power diode pumped solid state laser[J]. Laser Physics Letters, 14, 035803(2017).

    [53] Gyger F, Liu Junqiu, Yang Fan, et al. Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides[J]. Physical Review Letters, 124, 013902(2020).

    [54] Garmire E. Perspectives on stimulated Brillouin scattering[J]. New Journal of Physics, 19, 011003(2017).

    [55] Garmire E. Stimulated Brillouin review: invented 50 years ago and applied today[J]. International Journal of Optics, 2018, 2459501(2018).

    [56] Neshev D, Velchev I, Majewski W A, et al. SBS pulse compression to 200 ps in a compact single-cell setup[J]. Applied Physics B, 68, 671-675(1999).

    [57] Dane C B, Neuman W A, Hackel L A. High-energy SBS pulse compression[J]. IEEE Journal of Quantum Electronics, 30, 1907-1915(1994).

    [58] Park H, Lim C, Yoshida H, et al. Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids[J]. Japanese Journal of Applied Physics, 45, 5073-5075(2006).

    [59] Hasi Wuliji, Lü Zhiwei, He Weiming, et al. Study on Brillouin amplification in different liquid media[J]. Acta Physica Sinica, 54, 742-748(2005).

    [60] Wang Yulei, Lv Zhiwei, Guo Qi, et al. A new circulating two-cell structure for stimulated Brillouin scattering phase conjugation mirrors with 1-J load and 10-Hz repetition rate[J]. Chinese Optics Letters, 8, 1064-1066(2010).

    [61] Wang Hongli. Research on pulsed compression technologies of kHz subnanosecond laser based on stimulated Brillouin scattering[D]. Harbin: Harbin Institute of Technology, 2019

    [62] Li Yong. Investigation on compensate phase aberration of repetition laser by SBSPCM[D]. Harbin: Harbin Institute of Technology, 2008

    [63] Yoshida H, Nakatsuka M. Highpower phaseconjugating mirr based on stimulated Brillouin scattering in liquid solid materials[C]Proceedings of 2005 Pacific Rim Conference on Lasers & ElectroOptics. IEEE, 2005: 11661167.

    [64] Beak D H, Yoon J W, Shin J S, et al. Restoration of high spatial frequency at the image formed by stimulated Brillouin scattering with a prepulse[J]. Applied Physics Letters, 93, 231113(2008).

    [65] Kong Hongjin, Beak D H, Lee D W, et al. Waveform preservation of the backscattered stimulated Brillouin scattering wave by using a prepulse injection[J]. Optics Letters, 30, 3401-3403(2005).

    [66] Rockwell D A. A review of phase-conjugate solid-state lasers[J]. IEEE Journal of Quantum Electronics, 24, 1124-1140(1988).

    [67] Wang V, Giuliano C R. Correction of phase aberrations via stimulated Brillouin scattering[J]. Optics Letters, 2, 4-6(1978).

    [68] Kir'yanov Y F, Kochemasov G G, Maslov N V, et al. Influence of thermal defocusing on the quality of phase conjugation of Gaussian beams by stimulated Brillouin scattering[J]. Quantum Electronics, 28, 58-61(1998).

    [69] Andreev N F, Khazanov E A, Pasmanik G A. Applications of Brillouin cells to high repetition rate solid-state lasers[J]. IEEE Journal of Quantum Electronics, 28, 330-341(1992).

    [70] reev N, Kulagin O P, Palashov O V, et al. SBS of repetitively pulsed radiation possibility of increasing the pump average power[C]Proceedings of SPIE 2633, Solid State Lasers f Application to Inertial Confinement Fusion (ICF). 1995: 476493.

    [71] Amnon Y. Phase conjugate optics and real-time holography[J]. IEEE Journal of Quantum Electronics., 14, 650-660(1978).

    [72] Bai Zhenxu, Yuan Hang, Liu Zhaohong, et al. Stimulated Brillouin scattering materials, experimental design and applications: a review[J]. Optical Materials, 75, 626-645(2018).

    [73] Damzen M J, Vlad V I, Babin V, et al. Stimulated Brillouin scattering: fundamentals applications[M]. Bristol: IOP Publishing Ltd, 2003.

    [74] Boyd R W. Nonlinear optics[M]. San Diego, CA: Academic Press, 2020.

    [75] Hasi W L J, Lu Z W, Li Q et al. Research on the enhancement of power-load of two-cell SBS system by choosing different media or mixture medium[J]. Laser and Particle Beams, 25, 207-210(2007).

    [76] Schiemann S, Ubachs W, Hogervorst W. Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup[J]. IEEE Journal of Quantum Electronics, 33, 358-366(1997).

    [77] Yoshida H, Kmetik V, Fujita H, et al. Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror[J]. Applied Optics, 36, 3739-3744(1997).

    [78] Lu Z W, Hasi W L J, Gong H P, et al. Generation of flat-top waveform by double optical limiting based on stimulated Brillouin scattering[J]. Optics Express, 14, 5497-5501(2006).

    [79] Boyd R W, Rza̧ewski K, Narum P. Noise initiation of stimulated Brillouin scattering[J]. Physical Review A, 42, 5514-5521(1990).

    [80] Wang Y L, Lu Z W, Li Y, et al. Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering[J]. Applied Physics B, 99, 257-261(2010).

    [81] Hon D T. Applications of wavefront reversal by stimulated Brillouin scattering[J]. Optical Engineering, 21, 212252(1982).

    [82] Kong Hongjin, Lee S K, Lee D W, et al. Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation[J]. Applied Physics Letters, 86, 051111(2005).

    [83] Wang Yulei, Lu Zhiwei, Lin Dianyang, et al. The perfmance of stimulated Brillouin scattering pulse improved by a prepulse seed[C]Proceedings of 2010 Academic Symposium on Optoelectronics Microelectronics Technology 10th ChineseRussian Symposium on Laser Physics Laser Technology Optoelectronics Technology (ASOT). IEEE, 2010: 157159.

    [84] Wang Y L, Lu Z W, He W M, et al. A new measurement of stimulated Brillouin scattering phase conjugation fidelity for high pump energies[J]. Laser and Particle Beams, 27, 297-302(2009).

    [85] Jaberi M, Farahbod A H, Soleimani H R. Spectral behavior of amplified back-scattered Stokes pulse in two-cell phase conjugating mirror[J]. Optics Communications, 335, 7-15(2015).

    [86] Kong Hongjin, Park S, Cha S, et al. Current status of the development of the Kumgang laser[J]. Optical Materials Express, 4, 2551-2558(2014).

    [87] Kiriyama H, Yamakawa K, Nagai T, et al. 360-W average power operation with a single-stage diode-pumped Nd: YAG amplifier at a 1-kHz repetition rate[J]. Optics Letters, 28, 1671-1673(2003).

    Adewale Akinyimika, Yulei Wang, Zhenxu Bai, Yunfei Li, Zhiwei Lu. Phase conjugation lasers based on stimulated Brillouin scattering with high-power and high-energy[J]. High Power Laser and Particle Beams, 2021, 33(11): 111007
    Download Citation