• Photonics Research
  • Vol. 12, Issue 9, 1868 (2024)
Huajie Liang1,2,†, Hongxin Zeng2,†, Tianchi Zhou2,*, Hanyu Zhao2..., Shaokang Gu2, Lin Zou1, Tao Jiang1, Lan Wang1,2, Feng Lan1,2, Shixiong Liang3, Zhihong Feng3, Ziqiang Yang1,2,4 and Yaxin Zhang1,2,4|Show fewer author(s)
Author Affiliations
  • 1Huzhou Key Laboratory of Terahertz Integrated Circuits and Systems, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
  • 2Sichuan Engineering Center of Integrated Optoelectronic & Radio Meta-chips, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 3National Key Laboratory of Solid-State Microwave Device and Circuit, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
  • 4Zhangjiang Laboratory, Shanghai 201204, China
  • show less
    DOI: 10.1364/PRJ.525410 Cite this Article Set citation alerts
    Huajie Liang, Hongxin Zeng, Tianchi Zhou, Hanyu Zhao, Shaokang Gu, Lin Zou, Tao Jiang, Lan Wang, Feng Lan, Shixiong Liang, Zhihong Feng, Ziqiang Yang, Yaxin Zhang, "Terahertz wide range phase manipulation with super-resolution precision by near-field nonlinear coupling of a digitally coding needle meta-chip," Photonics Res. 12, 1868 (2024) Copy Citation Text show less
    References

    [1] A. G. Markelz, D. M. Mittleman. Perspective on terahertz applications in bioscience and biotechnology. ACS Photonics, 9, 1117-1126(2022).

    [2] H. Matsumoto, I. Watanabe, A. Kasamatsu. Integrated terahertz radar based on leaky-wave coherence tomography. Nat. Electron., 3, 122-129(2020).

    [3] H. Guerboukha, K. Nallappan, M. Skorobogatiy. Toward real-time terahertz imaging. Adv. Opt. Photonics, 10, 843-938(2018).

    [4] Y. X. Zhang, K. Ding, H. Zeng. Ultrafast modulation of terahertz waves using on-chip dual-layer near-field coupling. Optica, 9, 1268-1275(2022).

    [5] S. Gong, D. Ping, C. Bi. High-performance direct terahertz modulator based on resonance mode transformation for high-speed wireless communication. Appl. Phys. Lett., 121, 231104(2022).

    [6] S. Koenig, D. Lopez-Diaz, J. Antes. Wireless sub-THz communication system with high data rate. Nat. Photonics, 7, 977-981(2013).

    [7] I. F. Akyildiz, C. Han, Z. Hu. Terahertz band communication: an old problem revisited and research directions for the next decade. IEEE Trans. Commun., 70, 4250-4285(2022).

    [8] P. Sen, J. V. Siles, N. Thawdar. Multi-kilometre and multi-gigabit-per-second sub-terahertz communications for wireless backhaul applications. Nat. Electron., 6, 164-175(2023).

    [9] Z. Chen, C. Han, Y. Wu. Terahertz wireless communications for 2030 and beyond: a cutting-edge frontier. IEEE Commun. Mag., 59, 66-72(2021).

    [10] H. T. Chen, W. J. Padilla, J. M. O. Zide. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [11] L. X. Liu, X. Zhang, M. Kenney. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater., 26, 5031-5036(2014).

    [12] Q. He, S. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [13] H.-T. Chen, W. J. Padilla, M. J. Cich. A metamaterial solid-state terahertz phase modulator. Nat. Photonics, 3, 148-151(2009).

    [14] Z. Q. Miao, Q. Wu, X. Li. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X, 5, 041027(2015).

    [15] Y. Zhao, Y. Zhang, Q. Shi. Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures. ACS Photonics, 5, 3040-3050(2018).

    [16] H. X. Zeng, S. Gong, L. Wang. A review of terahertz phase modulation from free space to guided wave integrated devices. Nanophotonics, 11, 415-437(2022).

    [17] L. Wang, X.-W. Lin, W. Hu. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci. Appl., 4, e253(2015).

    [18] Y. X. Zhang, S. Qiao, S. Liang. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett., 15, 3501-3506(2015).

    [19] Y. Z. Hu, T. Jiang, J. Zhou. Ultrafast terahertz frequency and phase tuning by all-optical molecularization of metasurfaces. Adv. Opt. Mater., 7, 1901050(2019).

    [20] S. H. Lee, M. Choi, T.-T. Kim. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater., 11, 936-941(2012).

    [21] M. S. Nikoo, E. Matioli. Electronic metadevices for terahertz applications. Nature, 614, 451-455(2023).

    [22] H. Zeng, H. Liang, Y. Zhang. High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip. Nat. Photonics, 15, 751-757(2021).

    [23] U. Shah, E. Decrossas, C. Jung-Kubiak. Submillimeter-wave 3.3-bit RF MEMS phase shifter integrated in micromachined waveguide. IEEE Trans. Terahertz Sci. Technol., 6, 706-715(2016).

    [24] E. Kim, S. Jeon. A compact 275–320-GHz reflection-type phase shifter. IEEE Microwave Wireless Compon. Lett., 32, 991-994(2022).

    [25] D. Muller, A. Haag, A. Bhutani. Bandwidth optimization method for reflective-type phase shifters. IEEE Trans. Microw. Theory Tech., 66, 1754-1763(2018).

    [26] P. V. Testa, C. Carta, F. Ellinger. A 160–190-GHz vector-modulator phase shifter for low-power applications. IEEE Microwave Wireless Compon. Lett., 30, 86-89(2020).

    [27] Q. Ma, T. J. Cui. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [28] Q. Ma, T. J. Cui. Information metamaterials: bridging the physical world and digital world. PhotoniX, 1, 1(2020).

    [29] C. Liu, Q. Ma, Z. Jie Luo. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron., 5, 113-122(2022).

    [30] F. Lan, L. Wang, H. Zeng. Real-time programmable metasurface for terahertz multifunctional wave front engineering. Light Sci. Appl., 12, 191(2023).

    [31] Q. W. Lin, H. Wong, L. Huitema. Coding metasurfaces with reconfiguration capabilities based on optical activation of phase-change materials for terahertz beam manipulations. Adv. Opt. Mater., 10, 2101699(2022).

    [32] T. C. Zhou, Y. Dong, S. Gong. A sub-terahertz high-speed traveling-wave switch modulator based on dynamically tunable double-resonant coupling units. IEEE Trans. Microw. Theory Tech., 71, 4346-4356(2023).

    Huajie Liang, Hongxin Zeng, Tianchi Zhou, Hanyu Zhao, Shaokang Gu, Lin Zou, Tao Jiang, Lan Wang, Feng Lan, Shixiong Liang, Zhihong Feng, Ziqiang Yang, Yaxin Zhang, "Terahertz wide range phase manipulation with super-resolution precision by near-field nonlinear coupling of a digitally coding needle meta-chip," Photonics Res. 12, 1868 (2024)
    Download Citation