[1] ZOU R P, YU A B. The packing of spheres in a cylindrical container: The thickness effect[J]. Chem Eng Sci, 1995, 50(9): 1504-1507.
[2] XU W X, LV Z, CHEN H S. Effects of particle size distribution, shape and volume fraction of aggregates on the wall effect of concrete via random sequential packing of polydispersed ellipsoidal particles[J]. Phys A Stat Mech Appl, 2013, 392(3): 416-426.
[8] LYU K, SHE W, CHANG H L, et al. Effect of fine aggregate size on the overlapping of interfacial transition zone (ITZ) in mortars[J]. Constr Build Mater, 2020, 248: 118559.
[11] ZOUAOUI R, MILED K, LIMAM O, et al. Analytical prediction of aggregates’ effects on the ITZ volume fraction and Young’s modulus of concrete[J]. Num Anal Meth Geomechanics, 2017, 41(7): 976-993.
[12] TONG L Y, LIU Q F, XIONG Q X, et al. Modeling the chloride transport in concrete from microstructure generation to chloride diffusivity prediction[J]. Computer Aided Civil Eng, 2024, https://doi.org/10.1111/mice.13331.
[14] KREIJGER P C. The skin of concrete composition and properties[J]. Mat Constr, 1984, 17(4): 275-283.
[16] XU W X, CHEN H S, LV Z. An overlapping detection algorithm for random sequential packing of elliptical particles[J]. Phys A Stat Mech Appl, 2011, 390(13): 2452-2467.
[17] STROEVEN M. Discrete numerical modelling of composite materials[D]. Delft: Delft University of Technology, 1999.
[19] ZHENG J J. Mesostructure of Concrete-Stereological analysis and some mechanical implications[D]. Delft: Delft University of Technology, 2000.
[20] LIN J J, CHEN H S, ZHANG R L, et al. Characterization of the wall effect of concrete via random packing of polydispersed superball-shaped aggregates[J]. Mater Charact, 2019, 154: 335-343.
[21] HUANG Q H, LI C Z, SONG X B. Spatial distribution characteristics of ellipsoidal coarse aggregates in concrete considering wall effect[J]. Constr Build Mater, 2022, 327: 126922.
[22] ZHENG J J, LI C Q, ZHAO L Y. Simulation of two-dimensional aggregate distribution with wall effect[J]. J Mater Civ Eng, 2003, 15(5): 506-510.
[23] LI M Q, CHEN H S, LI X Y, et al. Permeability of granular media considering the effect of grain composition on tortuosity[J]. Int J Eng Sci, 2022, 174: 103658.
[25] LI M Q, CHEN H S, LIN J J, et al. Areal analysis induced bias on interface thickness around ovoidal particles[J]. Constr Build Mater, 2020, 262: 120583.
[27] SAYARI T, HONORIO T, BENBOUDJEMA F, et al. Numerical and experimental investigation of wall effect in concrete[M]//RILEM Bookseries. Cham: Springer International Publishing, 2022: 311-326.
[29] XU W X, CHEN H S. Microstructural characterization of fresh cement paste via random packing of ellipsoidal cement particles[J]. Mater Charact, 2012, 66: 16-23.
[31] SHARMA M, BISHNOI S. Influence of properties of interfacial transition zone on elastic modulus of concrete: Evidence from micromechanical modelling[J]. Constr Build Mater, 2020, 246: 118381.
[32] CHEN H L, LI D D, MA X, et al. Mesoscale analysis of rubber particle effect on Young’s modulus and creep behaviour of crumb rubber concrete[J]. Int J Mech Mater Des, 2021, 17(3): 659-678.
[33] WU K, HAN H, LI H X, et al. Experimental study on concurrent factors influencing the ITZ effect on mass transport in concrete[J]. Cem Concr Compos, 2021, 123: 104215.
[34] LIU C, ZHANG M Z. Multiscale modelling of ionic diffusivity in unsaturated concrete accounting for its hierarchical microstructure[J]. Cem Concr Res, 2022, 156: 106766.
[35] MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metall, 1973, 21(5): 571-574.
[36] BENTZ D P, ARNOLD J, BOISCLAIR M J, et al. Influence of aggregate characteristics on concrete performance[R]. US Department of Commerce, National Institute of Standards and Technology, 2017.