• Chinese Optics Letters
  • Vol. 19, Issue 5, 050603 (2021)
Jie Zhong1, Ji Zhou2、*, Shecheng Gao2, and Weiping Liu2
Author Affiliations
  • 1School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
  • 2Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
  • show less
    DOI: 10.3788/COL202119.050603 Cite this Article Set citation alerts
    Jie Zhong, Ji Zhou, Shecheng Gao, Weiping Liu. Secure orthogonal time-frequency multiplexing with two-dimensional encryption for optical-wireless communications[J]. Chinese Optics Letters, 2021, 19(5): 050603 Copy Citation Text show less
    References

    [1] R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, R. Calderbank. Orthogonal time frequency space modulation. 2017 IEEE Wireless Communications and Networking Conference (WCNC), 1(2017).

    [2] A. Farhang, A. RezazadehReyhani, L. E. Doyle, B. Farhang-Boroujeny. Low complexity modem structure for OFDM-based orthogonal time frequency space modulation. IEEE Wireless Commun. Lett., 7, 344(2018).

    [3] P. Raviteja, E. Viterbo, Y. Hong. OTFS performance on static multipath channels. IEEE Wireless Commun. Lett., 8, 745(2019).

    [4] S. Tiwari, S. S. Das. Circularly pulse-shaped orthogonal time frequency space modulation. Electron. Lett., 56, 157(2020).

    [5] W. Yuan, Z. Wei, J. Yuan, D. W. K. Ng. A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation. IEEE Trans. Veh. Technol., 69, 7976(2020).

    [6] X. Wu, S. Ma, X. Yang. Tensor-based low-complexity channel estimation for mm wave massive MIMO-OTFS systems. J. Commun. Inf. Netw., 5, 324(2020).

    [7] G. D. Surabhi, A. Chockalingam. Low-complexity linear equalization for OTFS modulation. IEEE Commun. Lett., 24, 330(2020).

    [8] Y. Liu, S. Zhang, F. Gao, J. Ma, X. Wang. Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system. IEEE J. Sel. Areas Commun., 38, 1994(2020).

    [9] S. Gao, J. Zheng. Peak-to-average power ratio reduction in pilot-embedded OTFS modulation through iterative clipping and filtering. IEEE Commun. Lett., 24, 2055(2020).

    [10] Z. Ding. Robust beamforming design for OTFS-NOMA. IEEE OJ-COMS, 1, 33(2020).

    [11] L. Gaudio, M. Kobayashi, G. Caire, G. Colavolpe. On the effectiveness of OTFS for joint radar parameter estimation and communication. IEEE Trans. Wireless Commun., 19, 5951(2020).

    [12] M. J. Bocus, A. Doufexi, D. Agrafiotis. Performance of OFDM-based massive MIMO OTFS systems for underwater acoustic communication. IET Commun., 14, 588(2020).

    [13] J. Zhong, J. Zhou, W. Liu, J. Qin. Orthogonal time-frequency multiplexing with 2D Hermitian symmetry for optical-wireless communications. IEEE Photon. J., 12, 7901110(2020).

    [14] L. Zhang, X. Xin, B. Liu, Y. Wang. Secure OFDM-PON based on chaos scrambling. IEEE Photon. Technol. Lett., 23, 998(2011).

    [15] L. Zhang, X. Xin, B. Liu, X. Yin. Physical secure enhancement in optical OFDMA-PON based on two-dimensional scrambling. Opt. Express, 20, B32(2012).

    [16] T. Wu, C. Zhang, H. Wei, K. Qiu. PAPR and security in OFDM-PON via optimum block dividing with dynamic key and 2D-LASM. Opt. Express, 27, 27946(2019).

    [17] L. Deng, M. Cheng, X. Wang, H. Li, M. Tang, S. Fu, P. Shum, D. Liu. Secure OFDM-PON system based on chaos and fractional Fourier transform techniques. J. Lightwave Technol., 32, 2629(2014).

    [18] A. A. E. Hajomer, X. Yang, W. Hu. Chaotic Walsh–Hadamard transform for physical layer security in OFDM-PON. IEEE Photon. Technol. Lett., 29, 527(2017).

    [19] B. Liu, L. Zhang, X. Xin, N. Liu. Piecewise chaotic permutation method for physical layer security in OFDM-PON. IEEE Photon. Technol. Lett., 28, 2359(2016).

    [20] H. S. Gill, S. S. Gill, K. S. Bhatia. A novel chaos-based encryption approach for future-generation passive optical networks using SHA-2. J. Opt. Commun. Netw., 9, 1184(2017).

    [21] Z. Hu, C. Chan. A real-valued chaotic orthogonal matrix transform-based encryption for OFDM-PON. IEEE Photon. Technol. Lett., 30, 1455(2018).

    [22] M. H. Khadr, H. Elgala. Augmented communications: spectral efficiency and security enhanced visible light communications by design. Chin. Opt. Lett., 18, 090601(2020).

    [23] Y. Yang, C. Chen, W. Zhang, X. Deng, P. Du, H. Yang, W. Zhong, L. Chen. Secure and private NOMA VLC using OFDM with two-level chaotic encryption. Opt. Express, 26, 34031(2018).

    [24] H. Khan, M. Haneef, . Space–time cloaks through birefringent Goos–Hänchen shifts. Chin. Opt. Lett., 17, 032701(2019).

    [25] Z. Shang, H. Ren, J. Zhang. A block location scrambling algorithm of digital image based on Arnold transformation. Proceedings of the 9th International Conference for Young Computer Scientists, 2942(2008).

    [26] J. B. Carruthers, J. M. Kahn. Modeling of nondirected wireless infrared channels. IEEE Trans. Commun., 45, 1260(1997).

    [27] L. Shao, Z. Qin, B. Liu, H. Gao, J. Qin. 2D bi-scale rectangular mapping and its application in image scrambling. J. Comput.-Aided Des. Comput. Graphics, 21, 1025(2009).

    [28] X. Liu, F. Buchali. Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM. Opt. Express, 16, 21944(2008).

    Data from CrossRef

    [1] Luyao Li, Yang Qiu, Jing Xu. A K-Means Clustered Routing Algorithm with Location and Energy Awareness for Underwater Wireless Sensor Networks. Photonics, 9, 282(2022).

    Jie Zhong, Ji Zhou, Shecheng Gao, Weiping Liu. Secure orthogonal time-frequency multiplexing with two-dimensional encryption for optical-wireless communications[J]. Chinese Optics Letters, 2021, 19(5): 050603
    Download Citation