• Chinese Journal of Lasers
  • Vol. 50, Issue 18, 1813011 (2023)
Xinyue Gao and Qinghua Song*
Author Affiliations
  • Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
  • show less
    DOI: 10.3788/CJL230709 Cite this Article Set citation alerts
    Xinyue Gao, Qinghua Song. Recent Advances in Orbital Angular Momentum Multiplexed Metasurface Holography[J]. Chinese Journal of Lasers, 2023, 50(18): 1813011 Copy Citation Text show less
    References

    [1] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

    [2] Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America, 52, 1123-1130(1962).

    [3] Matsushima K, Sonobe N. Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects[J]. Applied Optics, 57, A150-A156(2018).

    [4] Paturzo M, Memmolo P, Finizio A et al. Synthesis and display of dynamic holographic 3D scenes with real-world objects[J]. Optics Express, 18, 8806-8815(2010).

    [5] Matsushima K, Arima Y, Nakahara S. Digitized holography: modern holography for 3D imaging of virtual and real objects[J]. Applied Optics, 50, H278-H284(2011).

    [6] Blanche P A. Holography, and the future of 3D display[J]. Light: Advanced Manufacturing, 2, 446-459(2021).

    [7] Huang T S. Digital holography[J]. Proceedings of the IEEE, 59, 1335-1346(1971).

    [8] Brown B R, Lohmann A W. Complex spatial filtering with binary masks[J]. Applied Optics, 5, 967-969(1966).

    [9] Slinger C, Cameron C, Stanley M. Computer-generated holography as a generic display technology[J]. Computer, 38, 46-53(2005).

    [10] Dallas W J. Computer-generated holograms[M]. Poon T C. Digital holography and three-dimensional display, 1-49(2006).

    [11] Osten W, Faridian A, Gao P et al. Recent advances in digital holography[J]. Applied Optics, 53, G44-G63(2014).

    [12] Sahin E, Stoykova E, Mäkinen J et al. Computer-generated holograms for 3D imaging: a survey[J]. ACM Computing Surveys, 53, 32.

    [13] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [14] Lin R J, Su V C, Wang S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).

    [15] Xie R S, Zhai G H, Wang X et al. High-efficiency ultrathin dual-wavelength pancharatnam–berry metasurfaces with complete independent phase control[J]. Advanced Optical Materials, 7, 1900594(2019).

    [16] Li L, Liu Z X, Ren X F et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 368, 1487-1490(2020).

    [17] Salary M M, Mosallaei H. Tunable all-dielectric metasurfaces for phase-only modulation of transmitted light based on quasi-bound states in the continuum[J]. ACS Photonics, 7, 1813-1829(2020).

    [18] Song Q H, Odeh M, Zúñiga-Pérez J et al. Plasmonic topological metasurface by encircling an exceptional point[J]. Science, 373, 1133-1137(2021).

    [19] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [20] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 4, 2807(2013).

    [21] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [22] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [23] Wang Q, Zhang X Q, Xu Y H et al. Broadband metasurface holograms: toward complete phase and amplitude engineering[J]. Scientific Reports, 6, 32867(2016).

    [24] Wan W W, Gao J E, Yang X D. Metasurface holograms for holographic imaging[J]. Advanced Optical Materials, 5, 1700541(2017).

    [25] Song X, Huang L L, Sun L et al. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface[J]. Applied Physics Letters, 112, 073104(2018).

    [26] Song X, Huang L L, Tang C C et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J]. Advanced Optical Materials, 6, 1701181(2018).

    [27] Huang L L, Zhang S A, Zentgraf T. Metasurface holography: from fundamentals to applications[J]. Nanophotonics, 7, 1169-1190(2018).

    [28] Zhao R Z, Huang L L, Tang C C et al. Nanoscale polarization manipulation and encryption based on dielectric metasurfaces[J]. Advanced Optical Materials, 6, 1800490(2018).

    [29] Lee G Y, Sung J, Lee B. Recent advances in metasurface hologram technologies (invited paper)[J]. ETRI Journal, 41, 10-22(2019).

    [30] Wu J W, Wang Z X, Zhang L et al. Anisotropic metasurface holography in 3-D space with high resolution and efficiency[J]. IEEE Transactions on Antennas and Propagation, 69, 302-316(2021).

    [31] Zheng G X, Zhou N, Deng L G et al. Full-space metasurface holograms in the visible range[J]. Optics Express, 29, 2920-2930(2021).

    [32] Cao T, Lian M, Liu K A et al. Wideband mid-infrared thermal emitter based on stacked nanocavity metasurfaces[J]. International Journal of Extreme Manufacturing, 4, 015402(2022).

    [33] Li X, Zhang X E, Zhao R Z et al. Independent light field manipulation in diffraction orders of metasurface holography[J]. Laser & Photonics Reviews, 16, 2100592(2022).

    [34] Dorrah A H, Capasso F. Tunable structured light with flat optics[J]. Science, 376, eabi6860(2022).

    [35] Li X P, Lan T H, Tien C H et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 3, 998(2012).

    [36] Yang Y M, Kravchenko I I, Briggs D P et al. All-dielectric metasurface analogue of electromagnetically induced transparency[J]. Nature Communications, 5, 5753(2014).

    [37] Yun H, Lee S Y, Hong K et al. Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity[J]. Nature Communications, 6, 7133(2015).

    [38] Yan C, Yang K Y, Martin O J F. Fano-resonance-assisted metasurface for color routing[J]. Light: Science & Applications, 6, e17017(2017).

    [39] Song Q H, Wu P C, Zhu W M et al. Split Archimedean spiral metasurface for controllable GHz asymmetric transmission[J]. Applied Physics Letters, 114, 151105(2019).

    [40] Mueller J P B, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [41] Yan L B, Zhu W M, Karim M F et al. Arbitrary and independent polarization control in situ via a single metasurface[J]. Advanced Optical Materials, 6, 1800728(2018).

    [42] Ding F, Chang B D, Wei Q S et al. Versatile polarization generation and manipulation using dielectric metasurfaces[J]. Laser & Photonics Reviews, 14, 2000116(2020).

    [43] Fan Q B, Liu M Z, Zhang C et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 125, 267402(2020).

    [44] Li L, Zhang J A, Hu Y Q et al. Broadband polarization-switchable multi-focal noninterleaved metalenses in the visible[J]. Laser & Photonics Reviews, 15, 2100198(2021).

    [45] Rubin N A, Zaidi A, Dorrah A H et al. Jones matrix holography with metasurfaces[J]. Science Advances, 7, eabg7488(2021).

    [46] Shi Z J, Zhu A Y, Li Z Y et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion[J]. Science Advances, 6, eaba3367(2020).

    [47] Tang J A, Li Z, Wan S A et al. Angular multiplexing nanoprinting with independent amplitude encryption based on visible-frequency metasurfaces[J]. ACS Applied Materials & Interfaces, 13, 38623-38628(2021).

    [48] Jang J, Lee G Y, Sung J et al. Independent multichannel wavefront modulation for angle multiplexed meta-holograms[J]. Advanced Optical Materials, 9, 2100678(2021).

    [49] Li G X, Chen S M, Pholchai N et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 14, 607-612(2015).

    [50] Liu B Y, Sain B, Reineke B et al. Nonlinear wavefront control by geometric-phase dielectric metasurfaces: influence of mode field and rotational symmetry[J]. Advanced Optical Materials, 8, 1902050(2020).

    [51] Mao N, Zhang G, Tang Y et al. Nonlinear vectorial holography with quad-atom metasurfaces[J]. Proceedings of the National Academy of Sciences, 119, e2204418119(2022).

    [52] Liu L X, Zhang X Q, Kenney M et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 26, 5031-5036(2014).

    [53] Xu H X, Hu G W, Han L et al. Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 7, 1801479(2019).

    [54] Chen Q M, Li Y, Ye J F et al. Wavelength and polarization multiplexed optical vortex demultiplexer[J]. Journal of Physics D: Applied Physics, 52, 375104(2019).

    [55] Leitis A, Tittl A, Liu M K et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 5, eaaw2871(2019).

    [56] Overvig A C, Shrestha S, Malek S C et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J]. Light: Science & Applications, 8, 92(2019).

    [57] Li J X, Chen S Q, Yang H F et al. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces[J]. Advanced Functional Materials, 25, 704-710(2015).

    [58] Song Q H, Baroni A, Sawant R et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces[J]. Nature Communications, 11, 2651(2020).

    [59] Song Q H, Khadir S, Vézian S et al. Printing polarization and phase at the optical diffraction limit: near- and far-field optical encryption[J]. Nanophotonics, 10, 697-704(2020).

    [60] Yuan Y Y, Zhang K, Ratni B et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]. Nature Communications, 11, 4186(2020).

    [61] Wan S A, Wan C W, Dai C J et al. Angular-multiplexing metasurface: building up independent-encoded amplitude/phase dictionary for angular illumination[J]. Advanced Optical Materials, 9, 2101547(2021).

    [62] Wang H, Jing Y, Li Y F et al. Tailoring circular dichroism for simultaneous control of amplitude and phase via ohmic dissipation metasurface[J]. Advanced Optical Materials, 9, 2100140(2021).

    [63] Wu T, Zhang X Q, Xu Q A et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 10, 2101223(2022).

    [64] Song Q H, Liu X S, Qiu C W et al. Vectorial metasurface holography[J]. Applied Physics Reviews, 9, 011311(2022).

    [65] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [66] Li Y, Li X, Chen L W et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 5, 1600502(2017).

    [67] Zhao H A, Quan B G, Wang X K et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band[J]. ACS Photonics, 5, 1726-1732(2018).

    [68] Meng Y F, Yi J J, Burokur S N et al. Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum[J]. Optics Express, 26, 22019-22029(2018).

    [69] Tan H Y, Deng J H, Zhao R Z et al. A free-space orbital angular momentum multiplexing communication system based on a metasurface[J]. Laser & Photonics Reviews, 1800278(2019).

    [70] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).

    [71] Liu T H, Li W H, Meng Y Y et al. Six-mode orbital angular momentum generator enabled by helicity-assisted full-space metasurface with flexible manipulation of phase, polarization, and spatial information[J]. Advanced Optical Materials, 10, 2102638(2022).

    [72] Liu F, Tsilipakos O, Pitilakis A et al. Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions[J]. Physical Review Applied, 11, 044024(2019).

    [73] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 14, 102-108(2020).

    [74] Kotlyar V V, Khonina S N, Kovalev A A et al. Diffraction of a plane, finite-radius wave by a spiral phase plate[J]. Optics Letters, 31, 1597-1599(2006).

    [75] Ren H R, Briere G, Fang X Y et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 10, 2986(2019).

    [76] Zhao R Z, Sain B, Wei Q S et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 7, 95(2018).

    [77] Zhou H Q, Sain B, Wang Y T et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 14, 5553-5559(2020).

    [78] Xiao Q A, Ma Q A, Yan T et al. Orbital-angular-momentum-encrypted holography based on coding information metasurface[J]. Advanced Optical Materials, 9, 2002155(2021).

    [79] Yang H, He P, Ou K et al. Angular momentum holography via a minimalist metasurface for optical nested encryption[J]. Light: Science & Applications, 12, 79(2023).

    [80] Jin L, Huang Y W, Jin Z W et al. Dielectric multi-momentum meta-transformer in the visible[J]. Nature Communications, 10, 4789(2019).

    [81] Liu H G, Li J, Fang X L et al. Dynamic computer-generated nonlinear-optical holograms[J]. Physical Review A, 96, 023801(2017).

    [82] Yang B, Hong X H, Lu R E et al. 2D wave-front shaping in optical superlattices using nonlinear volume holography[J]. Optics Letters, 41, 2927-2929(2016).

    [83] Wei D Z, Wang C W, Xu X Y et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nature Communications, 10, 4193(2019).

    [84] Fang X Y, Wang H J, Yang H C et al. Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal[J]. Physical Review A, 102, 043506(2020).

    [85] Fang X Y, Yang H C, Yao W Z et al. High-dimensional orbital angular momentum multiplexing nonlinear holography[J]. Advanced Photonics, 3, 015001(2021).

    [86] Ye W M, Zeuner F, Li X et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 7, 11930(2016).

    [87] Suchowski H, O’Brien K, Wong Z J et al. Phase mismatch–free nonlinear propagation in optical zero-index materials[J]. Science, 342, 1223-1226(2013).

    [88] Duan X Y, Kamin S, Liu N. Dynamic plasmonic colour display[J]. Nature Communications, 8, 14606(2017).

    [89] Yu P, Li J X, Li X et al. Generation of switchable singular beams with dynamic metasurfaces[J]. ACS Nano, 13, 7100-7106(2019).

    [90] Ren H R, Fang X Y, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 15, 948-955(2020).

    [91] Wang F L, Zhang X C, Xiong R et al. Depth multiplexing in an orbital angular momentum holography based on random phase encoding[J]. Optics Express, 30, 31863-31871(2022).

    [92] Li F J, Nie S P, Ma J et al. Multiple-dimensional multiplexed holography based on modulated chiro-optical fields[J]. Optics Express, 30, 41567-41579(2022).

    [93] Li F J, Ding H, Nie S P et al. Multiple-image encryption using phase jump gradient factors-based OAM multiplexing holography[J]. Optics and Lasers in Engineering, 160, 107303(2023).

    [94] Wang F L, Zhang X C, Xiong R et al. Angular multiplexation of partial helical phase modes in orbital angular momentum holography[J]. Optics Express, 30, 11110-11119(2022).

    [95] Yang D H, Li Y, Deng D et al. Controllable rotation of multiplexing elliptic optical vortices[J]. Journal of Physics D: Applied Physics, 52, 495103(2019).

    [96] Cheng P Y, Huang S J, Yan C. Ellipticity-encrypted orbital angular momentum multiplexed holography[J]. Journal of the Optical Society of America A, 38, 1875-1883(2021).

    [97] Zhu G X, Bai Z Y, Chen J Y et al. Ultra-dense perfect optical orbital angular momentum multiplexed holography[J]. Optics Express, 29, 28452-28460(2021).

    [98] Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam[J]. Optics Letters, 40, 597-600(2015).

    [99] Ouyang X, Xu Y, Xian M C et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nature Photonics, 15, 901-907(2021).

    [100] Visser T D, Wolf E. The origin of the Gouy phase anomaly and its generalization to astigmatic wavefields[J]. Optics Communications, 283, 3371-3375(2010).

    [101] Qin H, Su Z, Liu M et al. Arbitrarily polarized bound states in the continuum with twisted photonic crystal slabs[J]. Light: Science & Applications, 12, 66(2023).

    [102] Qin H, Shi Y, Su Z et al. Exploiting extraordinary topological optical forces at bound states in the continuum[J]. Science Advances, 8, eade7556(2022).

    Xinyue Gao, Qinghua Song. Recent Advances in Orbital Angular Momentum Multiplexed Metasurface Holography[J]. Chinese Journal of Lasers, 2023, 50(18): 1813011
    Download Citation