• Advanced Photonics
  • Vol. 7, Issue 1, 016006 (2025)
Maria Gorizia Ammendola1,2,†, Francesco Di Colandrea1,3,*, Lorenzo Marrucci1,4, and Filippo Cardano1,*
Author Affiliations
  • 1Università degli Studi di Napoli Federico II, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy
  • 2Scuola Superiore Meridionale, Napoli, Italy
  • 3University of Ottawa, Nexus for Quantum Technologies, Ottawa, Ontario, Canada
  • 4Institute of Applied Science and Intelligent Systems, CNR-ISASI, Pozzuoli, Italy
  • show less
    DOI: 10.1117/1.AP.7.1.016006 Cite this Article Set citation alerts
    Maria Gorizia Ammendola, Francesco Di Colandrea, Lorenzo Marrucci, Filippo Cardano, "Large-scale free-space photonic circuits in two dimensions," Adv. Photon. 7, 016006 (2025) Copy Citation Text show less
    References

    [1] W. Bogaerts et al. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [2] V. Nikkhah et al. Inverse-designed low-index-contrast structures on a silicon photonics platform for vector-matrix multiplication. Nat. Photonics, 18, 501-508(2024).

    [3] M. S. Kirsch et al. Nonlinear second-order photonic topological insulators. Nat. Phys., 17, 995-1000(2021).

    [4] F. Hoch et al. Reconfigurable continuously-coupled 3D photonic circuit for Boson sampling experiments. npj Quantum Inf., 8, 55(2022).

    [5] J. L. O’Brien. Optical quantum computing. Science, 318, 1567-1570(2007).

    [6] P. L. McMahon. The physics of optical computing. Nat. Rev. Phys., 5, 717-734(2023).

    [7] G. Wetzstein et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [8] S. Raghu, F. D. M. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A, 78, 033834(2008).

    [9] A. Aspuru-Guzik, P. Walther. Photonic quantum simulators. Nat. Phys., 8, 285-291(2012).

    [10] E. Lustig et al. Photonic topological insulator in synthetic dimensions. Nature, 567, 356-360(2019).

    [11] M. Hiekkamäki, R. Fickler. High-dimensional two-photon interference effects in spatial modes. Phys. Rev. Lett., 126, 123601(2021).

    [12] O. Lib, Y. Bromberg. Quantum light in complex media and its applications. Nat. Phys., 18, 986-993(2022).

    [13] B. Courme et al. Manipulation and certification of high-dimensional entanglement through a scattering medium. PRX Quantum, 4, 010308(2023).

    [14] A. Makowski et al. Large reconfigurable quantum circuits with SPAD arrays and multimode fibers. Optica, 11, 340-343(2024).

    [15] S. Goel et al. Inverse design of high-dimensional quantum optical circuits in a complex medium. Nat. Phys., 20, 232-239(2024).

    [16] H.-S. Zhong et al. Quantum computational advantage using photons. Science, 370, 1460-1463(2020).

    [17] J. M. Arrazola et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 591, 54-60(2021).

    [18] J. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [19] F. Flamini, N. Spagnolo, F. Sciarrino. Photonic quantum information processing: a review. Rep. Prog. Phys., 82, 016001(2018).

    [20] S. Slussarenko, G. J. Pryde. Photonic quantum information processing: a concise review. Appl. Phys. Rev., 6, 041303(2019).

    [21] F. Bouchard et al. Programmable photonic quantum circuits with ultrafast time-bin encoding. Phys. Rev. Lett., 133, 090601(2024).

    [22] K. L. Fenwick et al. Photonic quantum walk with ultrafast time-bin encoding. Optica, 11, 1017-1023(2024).

    [23] Q.-Q. Wang et al. Efficient learning of mixed-state tomography for photonic quantum walk. Sci. Adv., 10, eadl4871(2024).

    [24] F. Bouchard et al. Quantum communication with ultrafast time-bin qubits. PRX Quantum, 3, 010332(2022).

    [25] M. W. Matthès et al. Optical complex media as universal reconfigurable linear operators. Optica, 6, 465-472(2019).

    [26] I. Cristiani et al. Roadmap on multimode photonics. J. Opt., 24, 083001(2022).

    [27] M. Piccardo et al. Roadmap on multimode light shaping. J. Opt., 24, 013001(2021).

    [28] H. Kupianskyi, S. A. R. Horsley, D. B. Phillips. High-dimensional spatial mode sorting and optical circuit design using multi-plane light conversion. APL Photonics, 8, 026101(2023).

    [29] A. Rubano et al. Q-plate technology: a progress review [Invited]. J. Opt. Soc. Am. B, 36, D70-D87(2019).

    [30] A. D’Errico et al. Two-dimensional topological quantum walks in the momentum space of structured light. Optica, 7, 108-114(2020).

    [31] A. D’Errico et al. Bulk detection of time-dependent topological transitions in quenched chiral models. Phys. Rev. Res., 2, 023119(2020).

    [32] F. Di Colandrea et al. Ultra-long quantum walks via spin-orbit photonics. Optica, 10, 324-331(2023).

    [33] C. Esposito et al. Quantum walks of two correlated photons in a 2D synthetic lattice. npj Quantum Inf., 8, 34(2022).

    [34] B. Piccirillo et al. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate. Appl. Phys. Lett., 97, 241104(2010). https://doi.org/10.1063/1.3527083

    [35] A. D’Errico et al. Bloch–Landau–Zener dynamics induced by a synthetic field in a photonic quantum walk. APL Photonics, 6, 020802(2021).

    [36] R. Simon, N. Mukunda. Minimal three-component SU(2) gadget for polarization optics. Phys. Lett. A, 143, 165-169(1990).

    [37] A. Sit et al. General lossless spatial polarization transformations. J. Opt., 19, 094003(2017).

    [38] I. W. Stewart. The Static and Dynamic Continuum Theory of Liquid Crystals(2004).

    [39] H. Tang et al. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv., 4, eaat3174(2018).

    [40] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [41] J.-F. Morizur et al. Programmable unitary spatial mode manipulation. J. Opt. Soc. Am. A, 27, 2524(2010).

    [42] N. K. Fontaine et al. Laguerre-Gaussian mode sorter. Nat. Commun., 10, 1865(2019).

    [43] A. Nomerotski et al. Intensified Tpx3Cam, a fast data-driven optical camera with nanosecond timing resolution for single photon detection in quantum applications. J. Instrum., 18, C01023(2023).

    [44] D. Zia et al. Interferometric imaging of amplitude and phase of spatial biphoton states. Nat. Photonics, 17, 1009-1016(2023).

    [45] B. G. Oripov et al. A superconducting nanowire single-photon camera with 400,000 pixels. Nature, 622, 730-734(2023).

    Maria Gorizia Ammendola, Francesco Di Colandrea, Lorenzo Marrucci, Filippo Cardano, "Large-scale free-space photonic circuits in two dimensions," Adv. Photon. 7, 016006 (2025)
    Download Citation