• Infrared Technology
  • Vol. 43, Issue 6, 543 (2021)
Guangyuan WANG*, Zhengdong DENG, Zhao LU, Daqing WANG, Yue SHI, Haoli XU, and Xiaoning ZHAO
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    WANG Guangyuan, DENG Zhengdong, LU Zhao, WANG Daqing, SHI Yue, XU Haoli, ZHAO Xiaoning. Snow Information Recognition based on GF-6 PMS Images[J]. Infrared Technology, 2021, 43(6): 543 Copy Citation Text show less
    References

    [1] HE C, Liou K N, Takano Y, et al. Impact of grain shape and multiple black carbon internal mixing on snow albedo: Parameterization and radiative effect analysis[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 1253-1268.

    [2] Butt M J, Bilal M. Application of snowmelt runoff model for water resource management[J]. Hydrological Processes, 2011, 25(24): 3735-3747.

    [3] LIU M, XIONG C, PAN J, et al. High-resolution reconstruction of the maximum snow water equivalent based on remote sensing data in a mountainous area[J]. Remote Sensing, 2020, 12(3): 460-479.

    [4] XU L, Dirmeyer P. Snow–atmosphere coupling strength. Part II: Albedo effect versus hydrological effect[J]. Journal of Hydrometeorology, 2013, 14(2): 404-418.

    [7] Barnes J C, Bowley C J. Snow cover distribution as mapped from satellite photography[J]. Water Resources Research, 1968, 4(2): 257-272.

    [11] Kim S-H, Hong C-H. Antarctic land-cover classification using IKONOS and Hyperion data at Terra Nova Bay[J]. International Journal of Remote Sensing, 2012, 33(22): 7151-7164.

    [12] ZHU L, XIAO P, FENG X, et al. Support vector machine-based decision tree for snow cover extraction in mountain areas using high spatial resolution remote sensing image[J]. Journal of Applied Remote Sensing, 2014, 8(1): 084698.

    [13] Dozier J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper[J]. Remote Sensing of Environment, 1989, 28(1): 9-22.

    [14] Cea C, Cristal J, Pons X. An improved methodology to map snow cover by means of Landsat and MODIS imagery[C]//2007 IEEE International Geoscience and Remote Sensing Symposium, 2007: 4217-4220.

    [15] Khosla D, Sharma J, Mishra V. Snow cover monitoring using different algorithm on AWiFS sensor data[J]. International Journal of Advanced Engineering Sciences and Technologies, 2011, 7(1): 42-47.

    [19] Baghdadi N, Gauthier Y, Bernier M. Capability of multitemporal ERS-1 SAR data for wet-snow mapping[J]. Remote Sensing of Environment, 1997, 60(2): 174-186.

    [20] Rott H, Nagler T. Capabilities of ERS-1 SAR for snow and glacier monitoring in alpine areas[J]. European Space Agency-Publications-ESASP, 1994, 361: 965-965.

    [21] Koskinen J T, Pulliainen J T, Hallikainen M T. The use of ERS-1 SAR data in snow melt monitoring[J]. IEEE Transactions on Geoscience Remote Sensing, 1997, 35(3): 601-610.

    [22] Luojus K P, Pulliainen J T, Cutrona A B, et al. Comparison of SAR-based snow-covered area estimation methods for the boreal forest zone[J]. IEEE Geoscience Remote Sensing Letters, 2009, 6(3): 403-407.

    [23] Caves R, Hodson A, Turpin O, et al. Field verification of SAR wet snow mapping in a non-Alpine environment[J]. European Space Agency-Publications- ESA SP, 1998, 441: 519-526.

    [24] Malnes E, Guneriussen T. Mapping of snow covered area with Radarsat in Norway[C]//IEEE International Geoscience and Remote Sensing Symposium, 2002: 683-685.

    [25] Kelly R. The AMSR-E snow depth algorithm: description and initial results[J]. Journal of the Remote Sensing Society of Japan, 2009, 29(1): 307-317.

    [26] PAN J, JIANG L, ZHANG L. Wet snow detection in the south of China by passive microwave remote sensing[C]//IEEE International Geoscience and Remote Sensing Symposium, 2012: 4863-4866.

    [27] Singh P R, Gan T Y. Retrieval of snow water equivalent using passive microwave brightness temperature data[J]. Remote Sensing of Environment, 2000, 74(2): 275-286.

    [28] LIU X, JIANG L, WU S, et al. Assessment of methods for passive microwave snow cover mapping using FY-3C/MWRI data in China[J]. Remote Sensing, 2018, 10(4): 524-545.

    [29] Hinkler J, Pedersen S B, Rasch M, et al. Automatic snow cover monitoring at high temporal and spatial resolution, using images taken by a standard digital camera[J]. International Journal of Remote Sensing, 2002, 23(21): 4669-4682.

    [30] Keshri A, Shukla A, Gupta R. ASTER ratio indices for supraglacial terrain mapping[J]. International Journal of Remote Sensing, 2009, 30(2): 519-524.

    [31] Hinkler J, ?rb?k J B, Hansen B. Detection of spatial, temporal, and spectral surface changes in the Ny-?lesund area 79 N, Svalbard, using a low cost multispectral camera in combination with spectroradiometer measurements[J]. Physics Chemistry of the Earth, Parts A/B/C, 2003, 28(28-32): 1229-1239.

    [32] XIAO X M, SHEN Z X, QIN X G. Assessing the potential of VEGETATION sensor data for mapping snow and ice cover: a normalized difference snow and ice index[J]. International Journal of Remote Sensing, 2001, 22(13): 2479-2487.

    [33] XIAO X, Moore B, QIN X, et al. Large-scale observations of alpine snow and ice cover in Asia: using multi-temporal vgetation sensor data[J]. International Journal of Remote Sensing, 2002, 23(11): 2213-2228.

    [34] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.

    WANG Guangyuan, DENG Zhengdong, LU Zhao, WANG Daqing, SHI Yue, XU Haoli, ZHAO Xiaoning. Snow Information Recognition based on GF-6 PMS Images[J]. Infrared Technology, 2021, 43(6): 543
    Download Citation