• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 2, 428 (2024)
JIANG Xin1,2, ZHANG Chen2,3, LV Wei4, ZHANG Bingsen5, and YANG Quan-Hong1,2,*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: Cite this Article
    JIANG Xin, ZHANG Chen, LV Wei, ZHANG Bingsen, YANG Quan-Hong. Catalysis in Lithium-Sulfur Batteries: Origin and Prospect[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 428 Copy Citation Text show less
    References

    [1] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nat Mater, 2011, 11(1): 19-29.

    [2] FANG R, ZHAO S, SUN Z, et al. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Adv Mater, 2017, 29(48): 1606823.

    [3] SEH Z W, SUN Y M, ZHANG Q F, et al. Designing high-energy lithium-sulfur batteries[J]. Chem Soc Rev, 2016, 45(20): 5605-5634.

    [4] CHEN Z X, ZHAO M, HOU L P, et al. Toward practical high-energy- density lithium-sulfur pouch cells: A review[J]. Adv Mater, 2022, 34(35): 2201555.

    [5] YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angew Chem Int Ed, 2013, 52(50): 13186-13200.

    [6] FENG Y, WANG G, JU J G, et al. Towards high energy density Li-S batteries with high sulfur loading: From key issues to advanced strategies[J]. Energy Storage Mater, 2020, 32: 320-355.

    [7] WATANABE S, MA X L, SONG C S. Adsorptive desulfurization of jet fuels over TiO2-CeO2 mixed oxides: Role of surface Ti and Ce cations[J]. Catal Today, 2021, 371: 265-275.

    [8] PAHALAGEDARA L R, POYRAZ A S, SONG W Q, et al. Low temperature desulfurization of H2S: High sorption capacities by mesoporous cobalt oxide via increased H2S diffusion[J]. Chem Mater, 2014, 26(22): 6613-6621.

    [9] ZHANG C, LV W, ZHANG W G, et al. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries[J]. Adv Energy Mater, 2014, 4(7): 1301565.

    [10] ZHENG C, NIU S Z, LV W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017, 33: 306-312.

    [11] LIU D H, ZHANG C, ZHOU G M, et al. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect[J]. Adv Sci, 2018, 5(1): 1700270.

    [12] PANG Q, KUNDU D P, CUISINIER M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nat Commun, 2014, 5: 4759.

    [13] AL SALEM H, BABU G, RAO C V, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. J Am Chem Soc, 2015, 137(36): 11542-11545.

    [14] YUAN Z, PENG H J, HOU T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett, 2016, 16(1): 519-527.

    [15] QU Y J, SHAO M M, SHAO Y F, et al. Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction[J]. J Mater Chem A, 2017, 5(29): 15080-15086.

    [16] HUANG X, TANG J Y, LUO B, et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries[J]. Adv Energy Mater, 2019, 9(32): 1901872.

    [17] LEI T Y, CHEN W, HUANG J W, et al. Multi-functional layered WS2 Nanosheets for enhancing the performance of lithium-sulfur batteries[J]. Adv Energy Mater, 2017, 7(4): 1601843.

    [18] LI Z N, SAMI I, YANG J, et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries[J]. Nat Energy, 2023, 8(1): 84-93.

    [19] SUN Z H, ZHANG J Q, YIN L C, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nat Commun, 2017, 8(1): 1-8.

    [20] ZHOU T H, LV W, LI J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy Environ Sci, 2017, 10(7): 1694-1703.

    [21] SONG Y Z, ZHAO W, KONG L, et al. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries[J]. Energy Environ Sci, 2018, 11(9): 2620-2630.

    [22] YE C, JIAO Y, JIN H Y, et al. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries[J]. Angew Chem Int Ed, 2018, 57(51): 16703-16707.

    [23] YE H L, SUN J G, ZHANG S L, et al. Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li-S batteries[J]. ACS Nano, 2019, 13(12): 14208-14216.

    [24] LIANG X, HART C, PANG Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nat Commun, 2015, 6: 5682.

    [25] LI S, CEN Y, XIANG Q, et al. Vanadium dioxide-reduced graphene oxide binary host as an efficient polysulfide plague for high-performance lithium-sulfur batteries[J]. J Mater Chem A, 2019, 7(4): 1658-1668.

    [26] WANG R X, WANG K L, GAO S, et al. Electrocatalysis of polysulfide conversion by conductive RuO2 nano dots for lithium-sulfur batteries[J]. Nanoscale, 2018, 10(35): 16730-16737.

    [27] JEONG T G, CHOI D S, SONG H, et al. Heterogeneous catalysis for lithium-sulfur batteries: Enhanced rate performance by promoting polysulfide fragmentations[J]. ACS Energy Lett, 2017, 2(2): 327-333.

    [28] ZHOU G M, TIAN H Z, JIN Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proc Natl Acad Sci USA, 2017, 114(5): 840-845.

    [29] YUAN H D, CHEN X L, ZHOU G M, et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries[J]. ACS Energy Lett, 2017, 2(7): 1711-1719.

    [30] JIAO L, ZHANG C, GENG C N, et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Adv Energy Mater, 2019, 9(19): 1900219.

    [31] ZHANG B, LUO C, DENG Y Q, et al. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries[J]. Adv Energy Mater, 2020, 10(15): 2000091.

    [32] LI Y J, WANG W Y, ZHANG B, et al. Manipulating redox kinetics of sulfur species using Mott-Schottky electrocatalysts for advanced lithium-sulfur batteries[J]. Nano Lett, 2021, 21(15): 6656-6663.

    [33] XIONG W M, LIN J D, WANG H Q, et al. Construction of strong built-in electric field in binary metal sulfide heterojunction to propel high-loading lithium-sulfur batteries[J]. J Energy Chem, 2023, 81: 492-501.

    [34] YAO W Q, ZHENG W Z, XU J, et al. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries[J]. ACS Nano, 2021, 15(4): 7114-7130.

    [35] LEI D, SHANG W Z, ZHANG X, et al. Facile synthesis of heterostructured MoS2-MoO3 nanosheets with active electrocatalytic sites for high-performance lithium-sulfur batteries[J]. ACS Nano, 2021, 15(12): 20478-20488.

    [36] WU L S, HU J P, YANG X R, et al. Synergistic effect of adsorption and electrocatalysis of CoO/NiO heterostructure nanosheet assembled nanocages for high-performance lithium-sulfur batteries[J]. J Mater Chem A, 2022, 10(44): 23811-23822.

    [37] HUA W X, LI H, PEI C, et al. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries[J]. Adv Mater, 2021, 33(38): 2101006.

    [38] ZHU Y J, ZUO Y Z, JIAO X C, et al. Selective sulfur conversion with surface engineering of electrocatalysts in a lithium-sulfur battery[J]. Carbon Energy, 2023, 5(2): 1-13.

    [39] WANG R C, LUO C, WANG T S, et al. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries[J]. Adv Mater, 2020, 32(32): 2000315.

    [40] SHI Z X, SUN Z T, CAI J S, et al. Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li-S batteries[J]. Adv Mater, 2021, 33(43): 2103050.

    [41] YU Z H, LV W, LIN Q W, et al. A (110) facet-dominated vanadium dioxide enabling bidirectional electrocatalysis for lithium-sulfur batteries[J]. ACS Nano, 2021, 15(10): 16878-16886.

    [42] LUO C, LIANG X, SUN Y F, et al. An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries[J]. Energy Storage Mater, 2020, 33: 290-297.

    [43] YU Z H, HUANG X H, ZHENG M T, et al. Self-assembled macrocyclic copper complex enables homogeneous catalysis for high-loading lithium-sulfur batteries[J]. Adv Mater, 2023, 35(26): 2300861.

    [44] ZHAO C X, LI X Y, ZHAO M, et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries[J]. J Am Chem Soc, 2021, 143(47): 19865-19872.

    [45] WANG L, HUA W X, WAN X, et al. Design rules of a sulfur redox electrocatalyst for lithium-sulfur batteries[J]. Adv Mater, 2022, 34(14): 2110279.

    [46] WANG L, HU Z H, WAN X, et al. Li2S4 anchoring governs the catalytic sulfur reduction on defective SmMn2O5 in lithium-sulfur battery[J]. Adv Energy Mater, 2022, 12(20): 2200340.

    [47] HAN Z Y, ZHAO S Y, XIAO J W, et al. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries[J]. Adv Mater, 2021, 33(44): e2105947.

    [48] SHEN Z H, JIN X, TIAN J M, et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries[J]. Nat Catal, 2022, 5(6): 555-563.

    [49] HUA W X, SHANG T X, LI H, et al. Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis[J]. Nat Catal, 2023, 6(2): 174-184.

    JIANG Xin, ZHANG Chen, LV Wei, ZHANG Bingsen, YANG Quan-Hong. Catalysis in Lithium-Sulfur Batteries: Origin and Prospect[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 428
    Download Citation