[1] Liu J Z, Yan T Y, Kang X F et al. Influence of laser power on fracture properties of TC4 titanium alloy T-joint manufactured using dual-laser-beam bilateral synchronous welding[J]. Chinese Journal of Lasers, 48, 1802007(2021).
[2] Zhang S M, Zhang F Q, Zhou D W et al. Effects of Ni interlayer on microstructure and properties of fusion welded joints of magnesium/aluminum alloys[J]. Chinese Journal of Lasers, 47, 0702001(2020).
[3] Guo Y Y, Quan G F, Jiang Y L et al. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding[J]. Journal of Magnesium and Alloys, 9, 192-201(2021).
[4] Xu N, Shen J, Xie W D et al. Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates[J]. Materials Characterization, 61, 713-719(2010).
[5] Wang X P, Morisada Y, Fujii H. Interface development and microstructure evolution during double-sided friction stir spot welding of magnesium alloy by adjustable probes and their effects on mechanical properties of the joint[J]. Journal of Materials Processing Technology, 294, 117104(2021).
[6] Zhang H F, Zhou L, Li W L et al. Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints[J]. International Journal of Minerals, Metallurgy and Materials, 28, 699-709(2021).
[7] Yuan S N, Wang K S, Qiao K et al. Microstructure and properties of AZ31/ZrO2 composites prepared by friction stir processing[J]. Journal of Plasticity Engineering, 28, 190-197(2021).
[8] Hou J, Qin D Q, Mao Y et al. High speed friction stir welding process of magnesium alloy[J]. Journal of Netshape Forming Engineering, 11, 127-134(2019).
[9] Rong Y, Cheng D H, Xiong Z Y et al. Microstructure and properties of laser welding-brazing welded joint of Mg/steel with Ni interlayer assisted by alternating magnetic field[J]. Chinese Journal of Lasers, 48, 2202005(2021).
[10] Lei Z L, Bi J, Li P et al. Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy[J]. Optics & Laser Technology, 105, 15-22(2018).
[11] Hao K D, Wang H K, Gao M et al. Laser welding of AZ31B magnesium alloy with beam oscillation[J]. Journal of Materials Research and Technology, 8, 3044-3053(2019).
[12] Song G, Yu P N, Li T T et al. Simulation and analysis of magnesium alloy/steel by laser-induced arc hybrid welding[J]. Chinese Journal of Lasers, 47, 0602001(2020).
[13] Xin L J, Lin S B, Liu X P et al. Relationship between molten pool behavior and keyhole-induced porosity in pulsed laser-arc hybrid welding of magnesium alloy[J]. Rare Metal Materials and Engineering, 49, 1894-1900(2020).
[14] Tan C W, Li L Q, Chen Y B et al. Characteristics of fiber laser and CO2 laser welding of AZ31B magnesium alloys[J]. Chinese Journal of Lasers, 38, 0603015(2011).
[15] Zhang G L, Kong H, Zou J L et al. Spatter characteristics of high-power fibre laser deep penetration welding and effect of defocus on spatter[J]. Chinese Journal of Lasers, 48, 2202008(2021).
[16] Liu L M, Wang J F, Song G. Hybrid laser-arc welding of AZ31B Mg alloy[J]. Chinese Journal of Lasers, 31, 1523-1526(2004).
[17] Song G, Liu L M, Wang J F et al. Laser tungsten inert-gas arc hybrid welding process on wrought magnesium ahoy AZ31B[J]. Transactions of the China Welding Institution, 25, 31-34, 130(2004).
[18] Shan J G, Zhang J, Zheng S Q et al. Experimental study on pores in laser welding of magnesium alloys[J]. Rare Metal Materials and Engineering, 38, 234-239(2009).
[19] Gao M, Tang H G, Chen X F et al. High power fiber laser arc hybrid welding of AZ31B magnesium alloy[J]. Materials & Design, 42, 46-54(2012).
[20] Gao M, Mei S W, Wang Z M et al. Process and joint characterizations of laser-MIG hybrid welding of AZ31 magnesium alloy[J]. Journal of Materials Processing Technology, 212, 1338-1346(2012).
[21] Lei Z L, Bi J, Li P et al. Melt flow and grain refining in ultrasonic vibration assisted laser welding process of AZ31B magnesium alloy[J]. Optics & Laser Technology, 108, 409-417(2018).
[22] Duocastella M, Arnold C B. Bessel and annular beams for materials processing[J]. Laser & Photonics Reviews, 6, 607-621(2012).
[23] Kang M, Kim C. Evaluation of hot cracking susceptibility on laser welded aluminum alloy using coaxially arranged multiple-beam laser[J]. Journal of Laser Applications, 32, 022072(2020).
[24] Rinne J S, Nothdurft S, Hermsdorf J et al. Advantages of adjustable intensity profiles for laser beam welding of steel copper dissimilar joints[J]. Procedia CIRP, 94, 661-665(2020).
[25] Mohammadpour M, Wang L, Kong F R et al. Adjustable ring mode and single beam fiber lasers: a performance comparison[J]. Manufacturing Letters, 25, 50-55(2020).
[26] Zhang M J, Tang K, Zhang J et al. Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates[J]. The International Journal of Advanced Manufacturing Technology, 96, 491-501(2018).
[27] Zhang M J, Zhang Y Z, Mao C et al. Experiments on formation mechanism of root humping in high-power laser autogenous welding of thick plates with stainless steels[J]. Optics & Laser Technology, 111, 11-19(2019).
[28] Lin C M, Tsai H L, Lee C L et al. Influence of CO2 laser welding parameters on the microstructure, metallurgy, and mechanical properties of Mg-Al alloys[J]. International Journal of Minerals, Metallurgy, and Materials, 19, 1114-1120(2012).
[29] Quan Y J, Chen Z H, Gong X S et al. Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31[J]. Materials Characterization, 59, 1491-1497(2008).
[30] Wang L Z, Shen J, Xu N. Effects of TiO2 coating on the microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints[J]. Materials Science and Engineering: A, 528, 7276-7284(2011).