• High Power Laser and Particle Beams
  • Vol. 35, Issue 4, 041006 (2023)
Can Cui1、2, Yue Wang3, Yulei Wang1、2、*, Zhenxu Bai1、2, and Zhiwei Lü1、2
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • 3National Key Laboratory of Science and Technology on Tunable Laser, School of Astronautics, Harbin Institute of Technology, Harbin 150002, China
  • show less
    DOI: 10.11884/HPLPB202335.220359 Cite this Article
    Can Cui, Yue Wang, Yulei Wang, Zhenxu Bai, Zhiwei Lü. Research progress on nonlinear optics laser beam combining technology[J]. High Power Laser and Particle Beams, 2023, 35(4): 041006 Copy Citation Text show less
    References

    [1] Zylstra A B, Kritcher A L, Hurricane O A, et al. Experimental achievement and signatures of ignition at the National Ignition Facility[J]. Physical Review E, 106, 025202(2022).

    [2] Le Pape S, Hopkins L F B, Divol L, et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility[J]. Physical Review Letters, 120, 245003(2018).

    [3] Srinivas G, Gowda B H H K, Gowda H C, et al. Survey on laser guided missile systems and implementation by developing a laser guidance system[J]. Global Journal of Electronic and Communication Research, 12, 1-9(2021).

    [4] Xu Hongfei, Xia Jiqiang, Yuan Zhaohui, et al. Design implementation of differential drive AGV based on laser guidance[C]Proceedings of the 2019 3rd International Conference on Robotics Automation Sciences (ICRAS). 2019: 112117.

    [5] Quazi M M, Ishak M, Fazal M A, et al. A comprehensive assessment of laser welding of biomedical devices and implant materials: recent research, development and applications[J]. Critical Reviews in Solid State and Materials Sciences, 46, 109-151(2021).

    [6] Sundar R, Ganesh P, Gupta R K, et al. Laser shock peening and its applications: a review[J]. Lasers in Manufacturing and Materials Processing, 6, 424-463(2019).

    [7] Veinhard M, Bellanger S, Daniault L, et al. Orbital angular momentum beams generation from 61 channels coherent beam combining femtosecond digital laser[J]. Optics Letters, 46, 25-28(2021).

    [8] Klenke A, Müller M, Stark H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0902709(2018).

    [9] Le Dortz J, Heilmann A, Antier M, et al. Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers[J]. Optics Letters, 42, 1887-1890(2017).

    [10] Xin Guofeng, Pi Haoyang, Shen Li, . Beam incoherence combination of high power laser diode[J]. Laser & Optoelectronics Progress, 47, 101404(2010).

    [11] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 567-577(2005).

    [12] Mcnaught S J, Asman C P, Injeyan H, et al. 100kW coherently combined Nd: YAG MOPA laser array[C]Proceedings of the Frontiers in Optics 2009Laser Science XXVFall 2009 OSA Optics & Photonics Technical Digest. 2009: FThD2.

    [13] Wu Jian, Ma Yanxing, Ma Pengfei, . Fiber laser coherent synthesis 20 kW class high power output[J]. Infrared and Laser Engineering, 50, 20210621(2021).

    [14] Liu Zejin, Zhou Pu, Tao Rumao, . Analysis of beam combination technology of high-power LD pumped laser array[J]. Acta Optica Sinica, 31, 0900113(2011).

    [15] Wang Dan, Du Qiang, Zhou Tong, et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 29, 5694-5709(2021).

    [16] Kunkel W M, Leger J R. Passive coherent laser beam combining with spatial mode selecting feedback[J]. IEEE Journal of Quantum Electronics, 55, 1600108(2019).

    [17] Cheng Yong, Liu Xu, Wan Qiang, et al. Mutual injection phase locking coherent combination of solid-state lasers based on corner cube[J]. Optics Letters, 38, 5150-5152(2013).

    [18] Linslal C L, Ayyaswamy P, Maji S, et al. Challenges in coherent beam combining of high power fiber amplifiers: a review[J]. ISSS Journal of Micro and Smart Systems, 11, 277-293(2022).

    [19] Fathi H, Närhi M, Gumenyuk R. Towards ultimate high-power scaling: Coherent beam combining of fiber lasers[J]. Photonics, 8, 566(2021).

    [20] Fsaifes I, Daniault L, Bellanger S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 28, 20152-20161(2020).

    [21] Ostermeyer M, Kong H J, Kovalev V I, et al. Trends in stimulated Brillouin scattering and optical phase conjugation[J]. Laser and Particle Beams, 26, 297-362(2008).

    [22] Mullen R A, Vickers D J, West L, et al. Phase conjugation by stimulated photorefractive scattering using a retroreflected seeding beam[J]. Journal of the Optical Society of America B, 9, 1726-1734(1992).

    [23] Moyer R H, Valley M, Cimolino M C. Beam combination through stimulated Brillouin scattering[J]. Journal of the Optical Society of America B, 5, 2473-2489(1988).

    [24] Moore T R, Boyd R W. Three-dimensional simulations of stimulated Brillouin scattering with focused Gaussian beams[J]. Journal of Nonlinear Optical Physics & Materials, 5, 387-408(1996).

    [25] Heuer A, Menzel R. Principles of phase conjugating Brillouin mirrs[M]Brignon A, Huignard J P. Phase Conjugate Laser Optics. Hoboken: John Wiley & Sons, Inc. , 2003: 1962.

    [26] Fisher R A. Optical phase conjugation[M]. New Yk: Academic Press, 2012: 5060.

    [27] Basov N G, Efimkov V F, Zubarev I G, et al. Inversion of Wavefront in SMBS of a depolarized pump[J]. Journal of Experimental and Theoretical Physics Letters, 28, 197-201(1978).

    [28] Basov N G, Efimkov V F, Zubarev I G, et al. Influence of certain radiation parameters on wavefront reversal of a pump wave in a Brillouin mirror[J]. Soviet Journal of Quantum Electronics, 9, 455-458(1979).

    [29] Basov N G, Efimkov V F, Zubarev I G, et al. Control of the characteristics of reversing mirrors in the amplification regime[J]. Soviet Journal of Quantum Electronics, 11, 1335-1337(1981).

    [30] Sumida D S, Jones D C, Rockwell D A. An 8.2 J phase-conjugate solid-state laser coherently combining eight parallel amplifiers[J]. IEEE Journal of Quantum Electronics, 30, 2617-2627(1994).

    [31] Bowers M W, Boyd R W, Hankla A K. Brillouin-enhanced four-wave-mixing vector phase-conjugate mirror with beam-combining capability[J]. Optics Letters, 22, 360-362(1997).

    [32] Shin Y S. Improvement of spatial beam profiles in beam combination using SBS mirrs[C]Proceedings of the SPIE 2778, 17th Congress of the International Commission f Optics: Optics f Science New Technology. 1996: 2778BL.

    [33] Kong H J, Lee J Y, Shin Y S, et al. Beam recombination characteristics in array laser amplification using stimulated Brillouin scattering phase conjugation[J]. Optical Review, 4, 277-283(1997).

    [34] Kong H J, Shin Y S, Kim H. Beam combination characteristics in an array laser using stimulated Brillouin scattering phase conjugate mirrors considering partial coherency between the beams[J]. Fusion Engineering and Design, 44, 407-417(1999).

    [35] Lee S K, Lee D W, Baek D H, et al. Independent phase control of Stokes waves f beam combination[C]Proceedings of the SPIE 5627, HighPower Lasers Applications III. 2004: 128135.

    [36] Kong H J, Lee S K, Lee D W, et al. Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation[J]. Applied Physics Letters, 86, 051111(2005).

    [37] Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors[J]. Applied Physics Letters, 92, 021120(2008).

    [38] Shin J S, Park S, Kong H J, et al. Phase stabilization of a wave-front dividing four-beam combined amplifier with stimulated Brillouin scattering phase conjugate mirrors[J]. Applied Physics Letters, 96, 131116(2010).

    [39] Kong H J, Park S, Cha S, et al. 0.4 J/10 ns/10 kHz-4 kW coherent beam combined laser using stimulated Brillouin scattering phase conjugation mirrors for industrial applications[J]. Physica Status Solidi (C), 10, 962-966(2013).

    [40] Brignon A. Coherent laser beam combining[M]. WileyVCH, 2013: 456457.

    [41] Bowers M W, Boyd R W. Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation[J]. IEEE Journal of Quantum Electronics, 34, 634-644(1998).

    [42] Dane C B, Hackel L A. Highaveragepower, highbrightness Nd: glass laser technology[R]. Califnia: Lawrence Liverme National Labaty, 1997: 239245.

    [43] Yoshida H, Nakatsuka M, Hatae T, et al. Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics[J]. Japanese Journal of Applied Physics, 43, L1038-L1040(2004).

    [44] Trines R M G M, Alves E P, Webb E, et al. New criteria for efficient Raman and Brillouin amplification of laser beams in plasma[J]. Scientific Reports, 10, 19875(2020).

    [45] Trines R M G M, Fiúza F, Bingham R, et al. Simulations of efficient Raman amplification into the multipetawatt regime[J]. Nature Physics, 7, 87-92(2011).

    [46] Malkin V M, Shvets G, Fisch N J. Fast compression of laser beams to highly overcritical powers[J]. Physical Review Letters, 82, 4448-4451(1999).

    [47] Wharton K B, Kirkwood R K, Glenzer S H, et al. Observation of energy transfer between identical-frequency laser beams in a flowing plasma[J]. Physical Review Letters, 81, 2248-2251(1998).

    [48] Cohen B I, Lasinski B F, Langdon A B, et al. Resonant stimulated Brillouin interaction of opposed laser beams in a drifting plasma[J]. Physics of Plasmas, 5, 3408-3415(1998).

    [49] Kruer W L, Wilks S C, Afeyan B B, et al. Energy transfer between crossing laser beams[J]. Physics of Plasmas, 3, 382-385(1996).

    [50] Kirkwood R K, Afeyan B B, Kruer W L, et al. Observation of energy transfer between frequency-mismatched laser beams in a large-scale plasma[J]. Physical Review Letters, 76, 2065-2068(1996).

    [51] Kirkwood R K, Williams E A, Cohen B I, et al. Saturation of power transfer between two copropagating laser beams by ion-wave scattering in a single-species plasma[J]. Physics of Plasmas, 12, 112701(2005).

    [52] Seka W, Baldis H A, Fuchs J, et al. Multibeam stimulated Brillouin scattering from hot, solid-target plasmas[J]. Physical Review Letters, 89, 175002(2002).

    [53] Kirkwood R K, Michel P, London R A, et al. Amplification of light in a plasma by stimulated ion acoustic waves driven by multiple crossing pump beams[J]. Physical Review E, 84, 026402(2011).

    [54] Kirkwood R K, Michel P, London R, et al. Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignition[J]. Physics of Plasmas, 18, 056311(2011).

    [55] Kirkwood R K, MacGowan B J, Montgomery D S, et al. Effect of ion-wave damping on stimulated Raman scattering in high-Z laser-produced plasmas[J]. Physical Review Letters, 77, 2706-2709(1996).

    [56] Kirkwood R K, Turnbull D P, Chapman T, et al. Plasma-based beam combiner for very high fluence and energy[J]. Nature Physics, 14, 80-84(2017).

    [57] Kirkwood R K, Turnbull D P, Chapman T, et al. A plasma amplifier to combine multiple beams at NIF[J]. Physics of Plasmas, 25, 056701(2018).

    [58] Kirkwood R K, Poole P L, Kalantar D H, et al. Production of high fluence laser beams using ion wave plasma optics[J]. Applied Physics Letters, 120, 200501(2022).

    [59] Poole P L, Kirkwood R K, Wilks S C, et al. Timeresolved measurement of power transfer in plasma amplifier experiments on NIF[C]Proceedings of the 2021 Conference on Lasers ElectroOptics. 2021: 12.

    [60] Peng H, Wu Z H, Zuo Y L, et al. Strongly coupled stimulated Brillouin amplification in pump-ionizing plasma[J]. Laser Physics Letters, 15, 026003(2018).

    [61] Jia Xiaobao, Jia Qing, Xiao Jianyuan, et al. Explicit highder symplectic integrats of coupled Schrodinger equations f pumpprobe systems[DBOL]. arXiv preprint arXiv: 2208.13120, 2022.

    [62] Zhang Rui, Zhou Dandan, Tian Xiaocheng, . Four-color laser for crossed-beam energy transfer research realized on high power laser facility[J]. High Power Laser and Particle Beams, 35, 029901(2023).

    [63] Bai Zhenxu, Yang Xuezong, Chen Hui, . Research progress of high-power diamond laser technology (invited)[J]. Infrared and Laser Engineering, 49, 20201076(2020).

    [64] McKay A, Spence D J, Coutts D W, et al. Noncollinear beam combining of kilowatt beams in a diamond Raman amplifier[C]Proceedings of the Advanced Solid State Lasers. 2014: ATu5A. 1.

    [65] McKay A, Mildren R P, Coutts D W, et al. SRS in the strong-focusing regime for Raman amplifiers[J]. Optics Express, 23, 15012-15020(2015).

    [66] McKay A, Spence D J, Coutts D W, et al. Diamond-based concept for combining beams at very high average powers[J]. Laser & Photonics Reviews, 11, 1600130(2017).

    [67] Ding Yingchun, Lv Zhiwei, He Weiming. Study of beam combination by stimulated Brillouin scattering[J]. High Power Laser and Particle Beams, 14, 353-356(2002).

    [68] Guo Qi, Lu Zhiwei, Wang Yulei. Highly efficient Brillouin amplification of strong Stokes seed[J]. Applied Physics Letters, 96, 221107(2010).

    [69] Guo Qi. Research on stimulated Brillouin scattering beam combination laser[D]. Harbin: Harbin Institute of Technology, 2010

    [70] Wang Shuangyi. Investigation of some key problems in serial laser beam combination based on Brillouin amplification[D]. Harbin: Harbin Institute of Technology, 2008

    [71] Wang Shuangyi, Lin Dianyang, Lv Zhiwei, . Numerical simulation and scheme design for laser beam combination of stimulated Brillouin scattering[J]. High Power Laser and Particle Beams, 15, 877-880(2003).

    [72] An Xiwen. Investigation of gain properities of noncollinear Brillouin amplification system[D]. Harbin: Harbin Institute of Technology, 2013

    [73] Chen Yi, Lu Zhiwei, Wang Yulei, et al. Phase matching for noncollinear Brillouin amplification based on controlling of frequency shift of stokes seed[J]. Optics Letters, 39, 3047-3049(2014).

    [74] Yuan Hang, Wang Yulei, Yuan Qiang, et al. Amplification of 200-ps high-intensity laser pulses via frequency matching stimulated Brillouin scattering[J]. High Power Laser Science and Engineering, 7, e41(2019).

    [75] Yuan Hang, Wang Yulei, Lu Zhiwei, et al. Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse[J]. Optics Letters, 43, 511-514(2018).

    [76] Cui Can, Wang Yulei, Lu Zhiwei, et al. Joulelevel 10 Hz noncollinear multipump SBS amplifier with high energy extraction efficiency used f laser beams combination[C]Proceedings of the Conference on Lasers ElectroOptics. 2019: JTu2A. 59.

    [77] Cui Can, Wang Yulei, Lu Zhiwei, et al. Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification[J]. Optics Express, 26, 32717-32727(2018).

    [78] Zhang Xiaomin, Hu Dongxia, Xu Dangpeng, . Physical limitations of high-power, high-energy lasers[J]. Chinese Journal of Lasers, 48, 1201002(2021).

    [79] Banerjee S, Mason P, Phillips J, et al. Pushing the boundaries of diode-pumped solid-state lasers for high-energy applications[J]. High Power Laser Science and Engineering, 8, e20(2020).

    [80] De Vido M, Mason P D, Ertel K, et al. The first kilowatt average power 100Jlevel DPSSL[C]Proceedings of the 2017 IEEE High Power Diode Lasers Systems Conference (HPD). 2017: 1920.

    [81] Divoky M, Sikocinski P, Pilar J, et al. Design of high-energy-class cryogenically cooled Yb3+∶YAG multislab laser system with low wavefront distortion[J]. Optical Engineering, 52, 064201(2013).

    [82] Kong H J, Park S, Cha S, et al. Coherent beam combination laser system using SBS-PCM for high repetition rate solid-state lasers[J]. Optical Materials, 35, 807-811(2013).

    [83] Bai Zhenxu, Yuan Hang, Liu Zhaohong, et al. Stimulated Brillouin scattering materials, experimental design and applications: a review[J]. Optical Materials, 75, 626-645(2018).

    [84] Wang Yue, Cui Can, Lu Zhiwei, et al. Beam spatial intensity modification based on stimulated Brillouin amplification[J]. Optics Express, 30, 35792-35806(2022).

    Can Cui, Yue Wang, Yulei Wang, Zhenxu Bai, Zhiwei Lü. Research progress on nonlinear optics laser beam combining technology[J]. High Power Laser and Particle Beams, 2023, 35(4): 041006
    Download Citation