• Photonics Research
  • Vol. 3, Issue 3, A79 (2015)
Zhengqian Luo1、*, Yingyue Li1, Min Zhong1, Yizhong Huang1, Xiaojiao Wan1, Jian Peng2, and Jian Weng2、3
Author Affiliations
  • 1Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
  • 2Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
  • 3e-mail: jweng@xmu.edu.cn
  • show less
    DOI: 10.1364/PRJ.3.000A79 Cite this Article Set citation alerts
    Zhengqian Luo, Yingyue Li, Min Zhong, Yizhong Huang, Xiaojiao Wan, Jian Peng, Jian Weng. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser [Invited][J]. Photonics Research, 2015, 3(3): A79 Copy Citation Text show less

    Abstract

    In this paper, both nonlinear saturable absorption and two-photon absorption (TPA) of few-layer molybdenum diselenide (MoSe2) were observed at 1.56 μm wavelength and further applied to mode-locked ultrafast fiber laser for the first time to our knowledge. Few-layer MoSe2 nanosheets were prepared by liquid-phase exfoliation method and characterized by x ray diffractometer, Raman spectroscopy, and atomic force microscopy. The obtained few-layer MoSe2 dispersion is further composited with a polymer material for convenient fabrication of MoSe2 thin films. Then, we investigated the nonlinear optical (NLO) absorption property of the few-layer MoSe2 film using a balanced twin-detector measurement technique. Both the saturable absorption and TPA effects of the few-layer MoSe2 film were found by increasing the input optical intensity. The saturable absorption shows a modulation depth of 0.63% and a low nonsaturable loss of 3.5%, corresponding to the relative modulation depth of 18%. The TPA effect occurred when the input optical intensity exceeds 260 MW/cm2. Furthermore, we experimentally exploit the saturable absorption of few-layer MoSe2 film to mode lock an all-fiber erbium-doped fiber laser. Stable soliton mode locking at 1558 nm center wavelength is achieved with pulse duration of 1.45 ps. It was also observed that the TPA process suppresses the mode-locking operation in the case of higher optical intensity. Our results indicate that layered MoSe2, as another two-dimensional nanomaterial, can provide excellent NLO properties (e.g., saturable absorption and TPA) for potential applications in ultrashort pulse generation and optical limiting.
    α=Δα/(1+I/Isat)+αlinear.(1)

    View in Article

    α=βI2+αlinear.(2)

    View in Article

    TBP=τ×c·Δλ/λ02,(3)

    View in Article

    Ep3.11λ02/2πcγ|Dav|/τ.(4)

    View in Article

    Zhengqian Luo, Yingyue Li, Min Zhong, Yizhong Huang, Xiaojiao Wan, Jian Peng, Jian Weng. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser [Invited][J]. Photonics Research, 2015, 3(3): A79
    Download Citation