[1] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature,2003, 424: 831-838.
[2] LI C H, BENEDICK A J, FENDEL P, et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s -1 [J]. Nature,2008, 452(7187): 610-612.
[3] NEWBURY N R. Searching for applications with a fine-tooth comb [J]. Nature Photonics, 2011, 5(4): 186-188.
[5] NELSON L E, JONES D J, TAMURA K, et al. Ultrashort-pulse fiber ring lasers [J]. Applied Physics B, 1997, 65: 277-294.
[6] TANG D Y, ZHAO L M, ZHAO B, et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers [J]. Physical Review A, 2005, 72(4): 1-9.
[7] LIU X M, PANG M. Revealing the buildup dynamics of harmonic modelocking states in ultrafast lasers [J]. Laser & Photonics Reviews, 2019, 13(9): 1-9.
[8] ZHANG Z X, ZHAN L, YANG X X, et al. Passive harmonically mode locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz [J]. Laser Physics Letters, 2007, 4(8): 592-596.
[9] GRAY S, GRUDININ A B, LOH W H, et al. Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps[J]. Optics Letters, 1995,20(2): 189-191.
[10] KUTZ J N, COLLINGS B C, BERGMAN K, et al. Stabilized pulse spacing in soliton lasers due to gain depletion and recovery[J]. IEEE Journal of Quantum ElectronicS, 1998, 34(9): 1749-1757.
[11] WANG Y, SET S Y, YAMASHITA S. Active mode-locking via pump modulation in a Tm-doped fiber laser [J]. APL Photonics, 2016, 1(7): 1-9.
[12] KOROBKO D A, STOLIAROV D A, ITRIN P A, et al. Harmonic modelocking fiber ring laser with a pulse repetition rate up to 12 GHz [J]. Optics & Laser Technology, 2021, 133: 11-16.
[13] WANG J L, WANG X L, LEI J J, et al. Recent advances in modelocked fiber lasers based on two-dimensional materials [J]. Nanophotonics, 2020, 9(8): 2315-2340.
[14] LAU K Y, ZHENG J C, JIN C H, et al. Mono-elemental saturable absorber in near-infrared mode-locked fiber laser: A review[J]. Infrared Physics & Technology, 2022, 122: 1-6.
[15] FENG L H, ZUO L, YANG A Y. Impacts of operational parameters on nonlinear polarization rotation-based passively mode-locked fiber laser [J]. Chinese Physics B, 2013, 22(2): 1-7.
[16] TAMURA K, IPPEN E P, HAUS H A, et al. 77-fs pulse generation froma stretched-pulsemode-locked all-fiberring laser[J].OpticsLetters, 1993, 18(13): 1080-1082.
[17] NAZEMOSADAT E, MAFI A. Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber [J]. Journal of the Optical Society of America B, 2013, 30(5): 1357-1367.
[18] RENNINGER W H, WISE F W. Optical solitons in graded-index mul-timode fibres [J]. Nature Communication, 2013, 4: 1-6.
[19] HOFMANN P, MAFI A, JOLLIVET C, et al. Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers [J]. Journal of Lightwave Technology, 2012, 30(14): 2289-2298.
[20] SIDORENKO P, FU W, WRIGHT L G, et al. Self-seeded, multi-megawatt, Mamyshev oscillator [J]. Optics Letters, 2018, 43(11): 2672-2675.
[21] SET S Y, YAGUCHI H, TANAKA Y, et al. Laser mode locking using a saturable absorber incorporating carbon nanotubes[J]. Journal of Lightwave Technology, 2004, 22(1): 51-56.
[22] CHANG S J, JU H I, SANG H Y, et al. Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes[J].OpticsExpress, 2011, 19(20): 19775-19780.
[23] KOO J, PARK J, LEE J, et al. Toward higher-order passive harmonic mode-locking of a soliton fiber laser[J]. Optics Express, 2012, 37(11): 1862-1864.
[24] HUANG Q Q, ZOU C H, WANG T X, et al. Influence of average cavity dispersion and spectral bandwidth on passively harmonic mode locked L-band Er-doped fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(4): 1-8.
[25] WANG Y, LI J, ZHANG E, et al. Coexistence of noise-like pulse and high repetition rate harmonic mode-locking in a dual-wavelength modelocked Tm-doped fiber laser[J]. OpticsExpress, 2017, 25(15): 17192-17200.
[26] HUANG J J, LIU X Y, LIN J Z, et al. Uni-and bidirectional soliton rainsin aNALMmode-locked Tm-doped fiberlaser [J]. Optics&LaserTechnology, 2024, 169: 1-5.
[27] HUANG Q, DAI L, ROZHIN A, et al. Nonlinearity managed passively harmonic mode-locked Er-doped fiber laser based on carbon nanotube film [J]. Optics Letters, 2021, 46(11): 2638-2641.
[28] BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics [J]. Nature Photonics, 2010, 4: 611-622.
[29] SOBON G, SOTOR J, ABRAMSKI K M. Passive harmonic modelocking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz [J]. Applied Physics Letters, 2012, 100(16): 1-4.
[30] LIU M, ZHENG X W, QI Y L, et al. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser [J]. Optics Express, 2014, 22(19): 22841-22846.
[31] YU H, ZHENG X, YIN K, et al. Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber [J]. Applied Optics, 2015, 54(34): 10290-10294.
[32] TIAN W, YU W, SHI J, et al. The property, preparation and application of topological insulators: a review [J]. Materials(Basel), 2017, 10(7): 1-45.
[33] GANEEV R A, POPOV V S, ZVYAGIN A I, et al. Exfoliated Bi2Te3 nanoparticle suspensions and films: morphological and nonlinear optical characterization [J]. Nanophotonics, 2021, 10(15): 3857-3870.
[34] HAJLAOUI M, PAPALAZAROU E, MAUCHAIN J, et al. Ultrafast surface carrier dynamics in the topological insulator Bi2Te3[J]. Nano Letters,2012, 12(7): 3532-3536.
[35] LUO Z C, LIU M, LIU H, et al. 2 GHz passively harmonic modelockedfiber laser by a microfiber-based topological insulator saturableabsorber [J]. Optics Letters, 2013, 38(24): 5212-5215.
[36] YAN P, LIN R, RUAN S, et al. A 2.95 GHz, femtosecond passiveharmonic mode-locked fiber laser based on evanescent field interactionwith topological insulator film [J]. Optics Express, 2015, 23(1): 154-164.
[37] WANG Y J, SONG C Y, ZHANG H, et al. 119th harmonic modelockingin the fiber laser based on a novel saturable absorber thin filmobtained by the sol-gel method [J]. Optics & Laser Technology, 2022, 145:1-8.
[38] MATSAS V J, NEWSON T P. Selfstarting passively mode-lockedfibre ring soliton laser exploiting nonlinear polarisation rotation [J]. ElectronicsLetters, 1992, 28(15): 1391-1393.
[39] TAO S, XU L X, CHEN G L, et al. Ultra-high repetition rate harmonicmode-locking generated in a dispersion and nonlinearity managed fiberlaser [J]. Journal of Lightwave Technology, 2016, 34(9): 2354-2357.
[40] KANG M S, JOLY N Y, RUSSELL P S J. Passive mode-locking offiberring laser at the 337th harmonic using gigahertz acoustic core resonances[J]. Optics Letters, 2013, 38(5): 561-563.
[41] PANG M, JIANG X, HE W, et al. Stable subpicosecond soliton fiberlaser passively mode-locked by gigahertz acoustic resonance in photoniccrystal fiber core [J]. Optica, 2015, 2(4): 339-342.
[42] HE W, PANG M, RUSSELL P S. Wideband-tunable soliton fiber lasermode-locked at 1.88 GHz by optoacoustic interactions in solid-core PCF [J]. Optics Express, 2015, 23(19): 24945-24954.
[43] PANG M, HE W, RUSSELL P. Gigahertz-repetition-rate Tm-dopedfiber laser passively mode-locked by optoacoustic effects in nanobore photonic crystal fiber [J]. Optics Letters, 2016, 41(19): 4601-4604.
[44] YEH D H, HE W, PANG M, et al. Pulse-repetition-rate tuning of a harmonicallymode-locked fiber laser using a tapered photonic crystal fiber [J].Optics Letters, 2019, 44(7): 1580-1583.
[45] HUANG L, ZHANG Y, CUI Y, et al. Microfiber-assisted gigahertz harmonicmode-locking in ultrafast fiber laser [J]. Optics Letters, 2020, 45(17):4678-4681.
[46] PU G Q, ZHANG L, HU W S, et al. Automatic mode-locking fiberlasers: progress and perspectives[J]. ScienceChina InformationSciences, 2020,63(6): 1-23.
[48] WANG Z K, WANG D N, YANG F, et al. Er-doped mode-locked fiber laser with a hybrid structure of a step-index-graded-index multimode fiber as the saturable absorber[J].Journal of Lightwave Technology, 2017, 35(24):5280-5285.
[49] LI H, WANG Z, LI C, et al. Mode-locked Tm fiber laser using SMFSIMF-GIMF-SMF fiber structure as a saturable absorber[J]. Optics Express, 2017, 25(22): 26546-26553.
[50] WANG Z, WANG D N, YANG F, et al. Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking [J]. Optics Letters, 2018, 43(9): 2078-2081.
[51] TEGIN U, ORTAC B. All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber [J].Optics Letters, 2018, 43(7): 1611-1614.
[52] LUO Y, XIANG Y, SHUM P P, et al. Stationary and pulsating vector dissipative solitons in nonlinear multimode interference based fiber lasers[J]. Optics Express, 2020, 28(3): 4216-4224.
[53] FU S, SHENG Q, ZHU X, et al. Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference [J]. Optics Express,2015, 23(13): 17255-17262.
[54] YANG F, WANG D N, WANG Z K, et al. Saturable absorber based ona single mode fiber - graded index fiber-single mode fiber structure with innermicro-cavity [J]. Optics Express, 2018, 26(2): 927-934.
[55] WANG T B, JIN L, ZHANG H W, et al. Gigahertz harmonic modelockedfiber laser based on tunable SMS ultrafast optical switch [J]. Annalender Physik, 2020, 532(5): 1-8.
[56] WANG R Y, JIN L, WANG J Z, et al. Harmonic mode-locked fiberlaser based on microfiber-assisted nonlinear multimode interference [J].Chinese Optics Letters, 2022, 20(1): 1-5.
[57] LI X H, JIN L, WANG R Y, et al. GHz-level all-fiber harmonic modelockedlaser based on microfiber-assisted nonlinear multimode interference[J]. Optics & Laser Technology, 2022, 155: 1-8.
[58] PITOIS S, FINOT C, PROVOST L, et al. Generation of localized pulsesfrom incoherent wave in optical fiber lines made of concatened Mamyshevregenerators [J]. Journal of the Optical Society of America B, 2008, 25(9): 1537-1547.
[59] ROCHETTE M, CHEN L R, SUN K, et al. Multiwavelength and tunableself-pulsating fiber cavity based on regenerative SPM Spectral Broadeningand Filtering [J]. IEEE Photonics Technology Letters, 2008, 20(17):1497-1499.
[61] LIU Z, ZIEGLER Z M, WRIGHT L G, et al. Megawatt peak powerfrom a Mamyshev oscillator [J]. Optica, 2017, 4(6): 649-654.
[62] ZELUDEVICIUS J, MICKUS M, REGELSKIS K. Investigation of differentconfigurations and operation regimes of fiber pulse generators basedon nonlinear spectral re-shaping [J]. Optics Express, 2018, 26(21): 27247-27264.
[63] POEYDEBAT E, SCOL F, VANVINCQ O, et al. All-fiber Mamyshevoscillatorwithhighaverage power and harmonicmode-locking[J].OpticsLetters,2020, 45(6): 1395-1398.
[64] PIECHAL B, SZCZEPANEK J, KARDAS T M, et al. Mamyshev oscillatorwith a widely tunable repetition rate [J]. Journal of Lightwave Technology,2021, 39(2): 574-581.
[65] WANG T, REN B, LI C, et al. Over 80 nJ sub-100 fs all-fiber mamyshevoscillator[J]. IEEE Journal of Selected Topics in Quantum Electronics,2021, 27(6): 1-5.
[66] SUI Y, JIN L, LIU Y K, et al. Harmonic mode-locking from erbiumdopedfiber self-starting mamyshev oscillator[J]. Journal of Lightwave Technology,2023, 42(5): 1-6.