• Photonics Research
  • Vol. 13, Issue 1, 59 (2025)
Daria M. Sokol1,2,†, Nikita Yu Dmitriev1,2,†, Dmitry A. Chermoshentsev1,2,3, Sergey N. Koptyaev1..., Anatoly V. Masalov1,4, Valery E. Lobanov1, Igor A. Bilenko1,5 and Artem E. Shitikov1,*|Show fewer author(s)
Author Affiliations
  • 1Russian Quantum Center, Moscow 143026, Russia
  • 2Moscow Institute of Physics and Technology (MIPT), Dolgoprudny 141701, Russia
  • 3Skolkovo Institute of Science and Technology, Moscow 143025, Russia
  • 4Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia
  • 5Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
  • show less
    DOI: 10.1364/PRJ.532984 Cite this Article Set citation alerts
    Daria M. Sokol, Nikita Yu Dmitriev, Dmitry A. Chermoshentsev, Sergey N. Koptyaev, Anatoly V. Masalov, Valery E. Lobanov, Igor A. Bilenko, Artem E. Shitikov, "Four-wave mixing in a laser diode gain medium induced by the feedback from a high-Q microring resonator," Photonics Res. 13, 59 (2025) Copy Citation Text show less
    References

    [1] R. N. Hall, G. E. Fenner, J. D. Kingsley. Coherent light emission from GaAs junctions. Phys. Rev. Lett., 9, 366-368(1962).

    [2] M. I. Nathan, W. P. Dumke, G. Burns. Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Lett., 1, 62-64(1962).

    [3] A. E. Siegman. Lasers(1986).

    [4] T. Simpson, J. Liu, A. Gavrielides. Period-doubling route to chaos in a semiconductor laser subject to optical injection. Appl. Phys. Lett., 64, 3539-3541(1994).

    [5] J. Sacher, D. Baums, P. Panknin. Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback. Phys. Rev. A, 45, 1893-1905(1992).

    [6] A. Kaszubowska, L. P. Barry, P. Anandarajah. Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter. IEEE Photonics Technol. Lett., 14, 1599-1601(2002).

    [7] T. B. Simpson, J.-M. Liu, M. AlMulla. Limit-cycle dynamics with reduced sensitivity to perturbations. Phys. Rev. Lett., 112, 023901(2014).

    [8] J.-P. Zhuang, X.-Z. Li, S.-S. Li. Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser. Opt. Lett., 41, 5764-5767(2016).

    [9] C.-H. Tseng, B.-K. Liao, S.-K. Hwang. All-optical, tunable, V- and W-band microwave generation using semiconductor lasers at period-one nonlinear dynamics with asymmetric mutual injection stabilization. Opt. Lett., 47, 4648-4651(2022).

    [10] P. Pérez, A. Quirce, A. Valle. Photonic generation of microwave signals using a single-mode VCSEL subject to dual-beam orthogonal optical injection. IEEE Photonics J., 7, 5500614(2015).

    [11] J.-P. Zhuang, S.-C. Chan. Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization. Opt. Lett., 38, 344-346(2013).

    [12] L. Fan, G. Xia, J. Chen. High-purity 60 GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation. Opt. Express, 24, 18252-18265(2016).

    [13] G. Chen, D. Lu, L. Guo. Optoelectronic oscillation of the second harmonic of a period-one oscillating distributed feedback laser. Optik, 180, 313-317(2019).

    [14] A. Hurtado, I. D. Henning, M. J. Adams. Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser. IEEE Photonics J., 5, 5900107(2013).

    [15] Y.-H. Hung, S.-K. Hwang. Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers. Opt. Lett., 38, 3355-3358(2013).

    [16] Y.-H. Hung, J.-H. Yan, K.-M. Feng. Photonic microwave carrier recovery using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF coherent detection. Opt. Lett., 42, 2402-2405(2017).

    [17] M. Pochet, T. Locke, N. G. Usechak. Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection. IEEE Photonics J., 4, 1881-1891(2012).

    [18] C. Cui, S.-C. Chan. Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks. IEEE J. Quantum Electron., 48, 490-499(2012).

    [19] C.-H. Cheng, C.-W. Lee, T.-W. Lin. Dual-frequency laser Doppler velocimeter for speckle noise reduction and coherence enhancement. Opt. Express, 20, 20255-20265(2012).

    [20] L.-C. Lin, S.-H. Liu, F.-Y. Lin. Stability of period-one (P1) oscillations generated by semiconductor lasers subject to optical injection or optical feedback. Opt. Express, 25, 25523-25532(2017).

    [21] S.-K. Hwang, J.-M. Liu, J. K. White. Characteristics of period-one oscillations in semiconductor lasers subject to optical injection. IEEE J. Sel. Top. Quantum Electron., 10, 974-981(2004).

    [22] S. Hwang, D. Liang. Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers. Appl. Phys. Lett., 89, 061120(2006).

    [23] M. AlMulla, J.-M. Liu. Effects of the linewidth enhancement factor on the microwave linewidth of the period-one oscillations of optically injected semiconductor lasers. Opt. Lett., 47, 1166-1169(2022).

    [24] J.-P. Zhuang, S.-C. Chan. Phase noise characteristics of microwave signals generated by semiconductor laser dynamics. Opt. Express, 23, 2777-2797(2015).

    [25] B. Zhao, Y. Peng, X. Wang. Modulation characteristics of period-one oscillations in quantum cascade lasers. Appl. Sci., 11, 11730(2021).

    [26] S.-S. Li, X. Zou, L. Wang. Stable period-one oscillations in a semiconductor laser under optical feedback from a narrowband fiber Bragg grating. Opt. Express, 28, 21286-21299(2020).

    [27] N. M. Kondratiev, V. E. Lobanov, A. V. Cherenkov. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express, 25, 28167-28178(2017).

    [28] N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov. Recent advances in laser self-injection locking to high-Q microresonators. Front. Phys., 18, 21305(2023).

    [29] W. Liang, V. S. Ilchenko, D. Eliyahu. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun., 6, 7371(2015).

    [30] R. Galiev, N. Pavlov, N. Kondratiev. Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators. Opt. Express, 26, 30509-30522(2018).

    [31] A. A. Savchenkov, J. E. Christensen, D. Hucul. Application of a self-injection locked cyan laser for barium ion cooling and spectroscopy. Sci. Rep., 10, 16494(2020).

    [32] A. A. Savchenkov, S.-W. Chiow, M. Ghasemkhani. Self-injection locking efficiency of a UV Fabry–Perot laser diode. Opt. Lett., 44, 4175-4178(2019).

    [33] A. E. Shitikov, R. R. Galiev, K. N. Min’kov. Red narrow-linewidth lasing and frequency comb from gain-switched self-injection-locked Fabry–Pérot laser diode. Sci. Rep., 13, 9830(2023).

    [34] E. Dale, M. Bagheri, A. Matsko. Microresonator stabilized 2 μm distributed-feedback GaSb-based diode laser. Opt. Lett., 41, 5559-5562(2016).

    [35] A. E. Shitikov, O. V. Benderov, N. M. Kondratiev. Microresonator and laser parameter definition via self-injection locking. Phys. Rev. Appl., 14, 064047(2020).

    [36] M. Siciliani de Cumis, S. Borri, G. Insero. Microcavity-stabilized quantum cascade laser. Laser Photonics Rev., 10, 153-157(2016).

    [37] R. R. Galiev, N. M. Kondratiev, V. E. Lobanov. Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator. Phys. Rev. Appl., 14, 014036(2020).

    [38] A. Savchenkov, E. Lopez, I. Solomatine. Spectral purity improvement in flickering self-injection locked lasers. IEEE J. Quantum Electron., 58, 2200209(2022).

    [39] A. E. Shitikov, I. I. Lykov, O. V. Benderov. Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator: experimental study. Opt. Express, 31, 313-327(2023).

    [40] R. R. Galiev, N. M. Kondratiev, V. E. Lobanov. Mirror-assisted self-injection locking of a laser to a whispering-gallery-mode microresonator. Phys. Rev. Appl., 16, 064043(2021).

    [41] J. Ji, H. Wang, J. Ma. Narrow linewidth self-injection locked fiber laser based on a crystalline resonator in add-drop configuration. Opt. Lett., 47, 1525-1528(2022).

    [42] B. Li, W. Jin, L. Wu. Reaching fiber-laser coherence in integrated photonics. Opt. Lett., 46, 5201-5204(2021).

    [43] J. Guo, C. A. McLemore, C. Xiang. Chip-based laser with 1-hertz integrated linewidth. Sci. Adv., 8, eabp9006(2022).

    [44] K. Liu, N. Chauhan, J. Wang. 36 Hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator. Optica, 9, 770-775(2022).

    [45] W. Jin, Q.-F. Yang, L. Chang. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [46] D. A. Chermoshentsev, A. E. Shitikov, E. A. Lonshakov. Dual-laser self-injection locking to an integrated microresonator. Opt. Express, 30, 17094-17105(2022).

    [47] H. Taheri, A. B. Matsko, L. Maleki. All-optical dissipative discrete time crystals. Nat. Commun., 13, 848(2022).

    [48] L. Shi, J. Luo, L. Jiang. Narrow linewidth semiconductor multi-wavelength DFB laser array simultaneously self-injection locked to a single microring resonator. Opt. Lett., 48, 1974-1977(2023).

    [49] N. G. Pavlov, S. Koptyaev, G. V. Lihachev. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics, 12, 694-698(2018).

    [50] A. S. Raja, A. S. Voloshin, H. Guo. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 10, 680(2019).

    [51] B. Stern, X. Ji, Y. Okawachi. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [52] N. M. Kondratiev, V. E. Lobanov, E. A. Lonshakov. Numerical study of solitonic pulse generation in the self-injection locking regime at normal and anomalous group velocity dispersion. Opt. Express, 28, 38892-38906(2020).

    [53] A. S. Voloshin, N. M. Kondratiev, G. V. Lihachev. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun., 12, 235(2021).

    [54] N. Y. Dmitriev, S. N. Koptyaev, A. S. Voloshin. Hybrid integrated dual-microcomb source. Phys. Rev. Appl., 18, 034068(2022).

    [55] A. E. Ulanov, T. Wildi, N. G. Pavlov. Synthetic reflection self-injection-locked microcombs. Nat. Photonics, 18, 294-299(2024).

    [56] G. Lihachev, W. Weng, J. Liu. Platicon microcomb generation using laser self-injection locking. Nat. Commun., 13, 1771(2022).

    [57] I. Kudelin, W. Groman, Q.-X. Ji. Photonic chip-based low-noise microwave oscillator. Nature, 627, 534-539(2024).

    [58] G. Lihachev, J. Riemensberger, W. Weng. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun., 13, 3522(2022).

    [59] G. P. Agrawal, N. K. Dutta. Rate Equations and Operating Characteristics, 231-318(1993).

    [60] A. N. Oraevsky, A. V. Yarovitsky, V. L. Velichansky. Frequency stabilisation of a diode laser by a whispering-gallery mode. Quantum Electron., 31, 897-903(2001).

    [61] M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 17, 1051-1057(2000).

    [62] T. B. Simpson, J.-M. Liu, M. AlMulla. Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators. IEEE J. Sel. Top. Quantum Electron., 19, 1500807(2013).

    [63] P. T. Do, C. Alonso-Ramos, X. Le Roux. Silicon photonic spiral shape resonator applied to the optoelectronic oscillator. IET Optoelectron., 13, 303-307(2019).

    [64] P. T. Do, C. Alonso-Ramos, X. Le Roux. Wideband tunable microwave signal generation in a silicon-micro-ring-based optoelectronic oscillator. Sci. Rep., 10, 6982(2020).

    [65] R. Ma, Z. Huang, S. Gao. Ka-band thin film lithium niobate photonic integrated optoelectronic oscillator. Photonics Res., 12, 1283-1293(2024).

    [66] J. Tang, T. Hao, W. Li. Integrated optoelectronic oscillator. Opt. Express, 26, 12257-12265(2018).

    Daria M. Sokol, Nikita Yu Dmitriev, Dmitry A. Chermoshentsev, Sergey N. Koptyaev, Anatoly V. Masalov, Valery E. Lobanov, Igor A. Bilenko, Artem E. Shitikov, "Four-wave mixing in a laser diode gain medium induced by the feedback from a high-Q microring resonator," Photonics Res. 13, 59 (2025)
    Download Citation