• High Power Laser and Particle Beams
  • Vol. 35, Issue 7, 071007 (2023)
Zhengyi Liu1、2、3, Xianlin Ye1、2, Song Zhang1、2、3, Xingbin Wei1、2、*, Huaijin Ren1、2, and Weimin Wang1、2
Author Affiliations
  • 1Institute of Applied Electronics, CAEP, Mianyang 621900, China
  • 2Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang 621900, China
  • 3Graduate School of China Academy of Engineering Physics, Beijing 100088, China
  • show less
    DOI: 10.11884/HPLPB202335.220391 Cite this Article
    Zhengyi Liu, Xianlin Ye, Song Zhang, Xingbin Wei, Huaijin Ren, Weimin Wang. Development of 2.94 μm room temperature CW Er:YAG laser technology[J]. High Power Laser and Particle Beams, 2023, 35(7): 071007 Copy Citation Text show less
    Experimental setup of Er:YAG laser
    Fig. 1. Experimental setup of Er:YAG laser
    Temperature distribution of the front surface of the crystal
    Fig. 2. Temperature distribution of the front surface of the crystal
    Temperature distribution curves of bonded/non-bonded crystal
    Fig. 3. Temperature distribution curves of bonded/non-bonded crystal
    Simulated temperature distribution profile
    Fig. 4. Simulated temperature distribution profile
    Pump light absorption and temperature distribution curves
    Fig. 5. Pump light absorption and temperature distribution curves
    Output power and beam quality
    Fig. 6. Output power and beam quality
    Spectra at different output power
    Fig. 7. Spectra at different output power
    Stark energy level distribution
    Fig. 8. Stark energy level distribution
    temperature/℃wavelength/nm
    18964.8
    24967.4
    30969.7
    36972.2
    Table 1. Pump wavelength with different cooling temperature
    Zhengyi Liu, Xianlin Ye, Song Zhang, Xingbin Wei, Huaijin Ren, Weimin Wang. Development of 2.94 μm room temperature CW Er:YAG laser technology[J]. High Power Laser and Particle Beams, 2023, 35(7): 071007
    Download Citation