• Frontiers of Optoelectronics
  • Vol. 9, Issue 2, 194 (2016)
Ning ZHANG1, Kenan CICEK1, Jiangbo ZHU1, Shimao LI2, Huanlu LI3, Marc SOREL3, Xinlun CAI2、*, and Siyuan YU1
Author Affiliations
  • 1Photonics Group, University of Bristol, Bristol BS8 1UB, UK
  • 2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • 3School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
  • show less
    DOI: 10.1007/s12200-016-0623-2 Cite this Article
    Ning ZHANG, Kenan CICEK, Jiangbo ZHU, Shimao LI, Huanlu LI, Marc SOREL, Xinlun CAI, Siyuan YU. Manipulating optical vortices using integrated photonics[J]. Frontiers of Optoelectronics, 2016, 9(2): 194 Copy Citation Text show less
    References

    [1] Poynting J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 1909, 82(557): 560–567

    [2] Beth R A. Mechanical detection and measurement of the angular momentum of light. Physical Review, 1936, 50(2): 115–125

    [3] Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre- Gaussian laser modes. Physical Review A, 1992, 45(11): 8185– 8189

    [4] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496

    [5] Bozinovic N, Yue Y, Ren Y, TurM, Kristensen P, Huang H,Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548

    [6] Wang J, Liu J, Lv X, Zhu L, Wang D, Li S, Wang A, Zhao Y, Long Y, Du J, Hu X, Zhou N, Chen S, Fang L, Zhang F. Ultra-high 435- bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals. In: Proceedings of European Conference on Optical Communication (ECOC), 2015

    [7] Shu J, Chen Z, Pu J, Zhu J, Liu D. Tight focusing of partially coherent and radiallly polarized vortex beams. Optics Communications, 2013, 295(10): 5–10

    [8] Edfors O, Johansson A J. Is orbital angular momentum (OAM) based radio communication an unexploited area IEEE Transactions on Antennas & Propagation, 2012, 60(2): 1126–1131

    [9] Brunet C, Vaity P, Messaddeq Y, LaRochelle S, Rusch L A. Design, fabrication and validation of an OAM fiber supporting 36 states. Optics Express, 2014, 22(21): 26117–26127

    [10] Ung B, Vaity P, Wang L, Messaddeq Y, Rusch L A, LaRochelle S. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Optics Express, 2014, 22 (15): 18044–18055

    [11] Padgett M J, Allen L. The angular momentum of light: optical spanners and the rotational frequency shift. Optical and Quantum Electronics, 1999, 31(1): 1–12

    [12] Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Physical Review Letters, 2015, 114(5): 050502-1–050502-5

    [13] Han Y J, Liao G Q, Chen L M, Li Y T, Wang W M, Zhang J. Highorder optical vortex harmonics generated by relativistic femtosecond laser pulse. Chinese Physics B, 2015, 24(6): 065202

    [14] Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456

    [15] Heckenberg N R, McDuff R, Smith C P, White A G. Generation of optical phase singularities by computer-generated holograms. Optics Letters, 1992, 17(3): 221–223

    [16] Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 1994, 112(5-6): 321–327

    [17] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905-1–163905-4

    [18] Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877

    [19] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337

    [20] Snyder A W, Love J D. Optical Waveguide Theory. Berlin: Springer, 1983, 12(3): 1–37

    [21] Wu C, Makino T, Glinski J, Maciejko R, Najafi S I. Self-consistent coupled-wave theory for circular gratings on planar dielectric waveguides. Journal of Lightwave Technology, 1991, 9(10): 1264– 1277

    [22] Jordan R H, Hall D G, King O,Wicks G, Rishton S. Lasing behavior of circular grating surface-emitting semiconductor lasers. Journal of the Optical Society of America B, 1997, 14(2):449–453

    [23] Barlow G F, Shore A, Turnbull G A, Samuel I. Design and analysis of a low-threshold polymer circular-grating distributed-feedback laser. Journal of the Optical Society of America B, 2004, 21(12): 2142–2150

    [24] Scheuer J, Green W M, DeRose G A, Yariv A. Lasing from a circular Bragg nanocavity with an ultrasmall modal volume. Applied Physics Letters, 2005, 86(25): 251101-1–251101-3

    [25] Scheuer J, Green W M, Derose G A, Yariv A. InGaAsP annular Bragg lasers: theory, applications, and modal properties. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2): 476–484

    [26] Doerr C R, Buhl L L. Circular grating coupler for creating focused azimuthally and radially polarized beams. Optics Letters, 2011, 36 (7): 1209–1211

    [27] Scheuer J. Radial Bragg lasers: optimal design for minimal threshold levels and enhanced mode discrimination. Journal of the Optical Society of America B, 2007, 24(9): 2178–2184

    [28] Liang G, Liang H, Zhang Y, Li L, Davies A G, Linfield E, Yu S F, Liu H C, Wang Q J. Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers . Optics Express, 2013, 21(26): 31872–31882

    [29] Fujita M, Baba T. Microgear laser. Applied Physics Letters, 2002, 80(12): 2051–2053

    [30] Zhang Z, Dainese M, Wosinski L, Qiu M. Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling. Optics Express, 2008, 16(7): 4621–4630

    [31] Arbabi A, Goddard L L. Grating assisted mode coupling in microring resonators. In: Proceedings of IEEE Photonics Conference (IPC). 2013, 434–435

    [32] Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366

    [33] Greene P L, Hall D G. Effects of radiation on circular-grating DFB lasers I. coupled-mode equations. IEEE Journal of Quantum Electronics, 2001, 37(3): 353–364

    [34] Huy K P, Morand A, Amans D, Benech P. Analytical study of the whispering-gallery mode in two-dimensional microgear cavity using coupled-mode theory. Journal of the Optical Society of America B, 2005, 22(8): 1793–1803

    [35] Sun X, Yariv A. Modal properties and modal control in vertically emitting annular Bragg lasers. Optics Express, 2007, 15(25): 17323–17333

    [36] Fujita M, Baba T. Proposal and finite-difference time-domain simulation of whispering gallery mode microgear cavity. IEEE Journal of Quantum Electronics, 2001, 37(10): 1253–1258

    [37] Zhu J, Cai X, Chen Y, Yu S. Theoretical model for angular gratingbased integrated optical vortex beam emitters. Optics Letters, 2013, 38(8): 1343–1345

    [38] Yu S, Cai X, Zhang N. High index contrast integrated optics in the cylindrical coordinate. In: Proceeding of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2015

    [39] Streifer W, Scifres D R, Burnham R D. Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and Waveguides-I. IEEE Journal of Quantum Electronics, 1976, 12(7): 422–428

    [40] Streifer W, Burnham R D, Scifres D R. Analysis of grating-coupled radiation in GaAs: GaAIAs lasers and waveguides II. blazing effects. IEEE Journal of Quantum Electronics, 1976, 12(8): 494– 499

    [41] Streifer W, Scifres D R, Burnham R D. Coupled wave analysis of DFB and DBR lasers. IEEE Journal of Quantum Electronics, 1977, 13(4): 134–141

    [42] Hardy A, Welch D F, Streifer W. Analysis of second-order gratings. IEEE Journal of Quantum Electronics, 1989, 25(10): 2096–2105

    [43] Watson G N. A treatise on the theory of Bessel functions. Nature, 1945, (3955):190–191

    [44] Strain M J, Cai X, Wang J, Zhu J, Phillips D B, Chen L, Lopez- Garcia M, O’Brien J L, Thompson M G, Sorel M, Yu S. Fast electrical switching of orbital angular momentum modes using ultracompact integrated vortex emitters. Nature Communications, 2014, 5: 4856

    [45] Liu J, Li S, Zhu L, Klitis C, Chen Y, Wang A, Li S, Long Y, Zheng S, Chen S, Sorel M. Demonstration of few mode fiber transmission link seeded by a silicon photonic integrated optical vortex emitter. In: Proceeding of European Conference on Optical Communication (ECOC), 2015

    [46] Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Optics Express, 2010, 18 (7): 7173–7183

    [47] Zhu J, Chen Y, Zhang Y, Cai X, Yu S. Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Optics Letters, 2014, 39(15): 4435–4438

    [48] Xiao Q S, Klitis C, Li S M, Chen Y Y, Cai X L, Sorel M, Yu S Y. Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings. Optics Express, 2016, 24(4): 3168–3176

    [49] Li H, Phillips D B, Wang X, Ho Y L, Chen L, Zhou X, Zhu J, Yu S, Cai X. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica, 2015, 2(6): 547–552

    Ning ZHANG, Kenan CICEK, Jiangbo ZHU, Shimao LI, Huanlu LI, Marc SOREL, Xinlun CAI, Siyuan YU. Manipulating optical vortices using integrated photonics[J]. Frontiers of Optoelectronics, 2016, 9(2): 194
    Download Citation