[1] X X LIU, X L NI, O KONDA et al. Clarification of the mechanism of pulse laser grinding of nanosecond lasers using high-speed camera imaging. Machines, 10, 196(2022).
[2] E R WAINWRIGHT, C J MILLER, L GIRI et al. Influence of silicon particle morphology on laser-induced plasma properties. Spectrochimica Acta Part B: Atomic Spectroscopy, 199, 106597(2023).
[3] H J SUN, Y ITO, G Q REN et al. Investigation of ultrashort pulse laser drilling of dielectric materials by combining time-resolved imaging and high-speed camera(2022).
[4] 曹柱荣, 王强强, 邓博, 等. 激光聚变极端环境下X光高速摄影技术研究进展[J]. 强激光与粒子束, 2020, 32(11): 200099. doi: 10.11884/HPLPB202032.200099CAOZ R, WANGQ Q, DENGB, et al. Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 200099.(in Chinese). doi: 10.11884/HPLPB202032.200099
[5] 薛林雁, 杨昆, 曹彪, 等. 飞秒脉冲激光产生及捕获微气泡的实验研究[J]. 河北大学学报(自然科学版), 2019, 39(4): 359-365.XUEL Y, YANGK, CAOB, et al. Experimental research of microbubble generation and trapping induced by femto-second laser pulses[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(4): 359-365.(in Chinese)
[6] E R WAINWRIGHT, S W DEAN, F C DE LUCIA et al. Effect of sample morphology on the spectral and spatiotemporal characteristics of laser-induced plasmas from aluminum. Applied Physics A, 126, 83(2020).
[7] 胡洋, 尹尚先, ARNTZENJ. Bjørn,等. 矿井瓦斯/空气预混气体爆燃的激光纹影测试系统设计[J]. 光学 精密工程, 2019, 27(5):1045-1051. doi: 10.3788/ope.20192705.1045HUY, YINS X, ARNTZENJ, et al. Design of laser schlieren test system for mine gas/airpremixed gas deflagration[J]. Opt. Precision Eng., 2019, 27(5): 1045-1051.(in Chinese). doi: 10.3788/ope.20192705.1045
[8] 畅里华, 温伟峰, 冉茂杰, 等. 炸药多点起爆超高速光电分幅摄影技术研究[J]. 爆炸与冲击, 2022, 42(4): 83-88. doi: 10.11883/bzycj-2021-0201CHANGL H, WENW F, RANM J, et al. Study on ultra-high speed photoelectric framing photography of the multi-point initiation of explosive[J]. Explosion and Shock Waves, 2022, 42(4): 83-88.(in Chinese). doi: 10.11883/bzycj-2021-0201
[9] X Y JIA, S S WANG, J XU et al. Nonlinear characteristics and corrections of near-field underwater explosion shock waves. Physics of Fluids, 34(2022).
[10] I E GUNDUZ. Microscopic imaging and optical pressure measurements of detonations. Propellants, Explosives, Pyrotechnics, 46, 1378-1387(2021).
[11] 郑星, 黄海莹, 毛勇建, 等. 基于高速纹影技术的爆炸冲击波图像测量研究[J]. 光学 精密工程, 2022, 30(18): 2187-2194. doi: 10.37188/OPE.20223018.2187ZHENGX, HUANGH Y, MAOY J, et al. Research on image measurement of explosion shock wave based on high speed schlieren technology[J]. Opt. Precision Eng., 2022, 30(18): 2187-2194.(in Chinese). doi: 10.37188/OPE.20223018.2187
[12] K L MCNESBY, B E HOMAN, R A BENJAMIN et al. Invited Article: quantitative imaging of explosions with high-speed cameras. The Review of Scientific Instruments, 87(2016).
[13] 刘宁文, 李剑, 赵新才, 等. 超高速光电分幅相机及应用[J]. 高压物理学报, 2016, 30(1): 37-41. doi: 10.11858/gywlxb.2016.01.006LIUN W, LIJ, ZHAOX C, et al. An ultra-high-speed electro-optical framing camera and its application[J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 37-41.(in Chinese). doi: 10.11858/gywlxb.2016.01.006
[14] 单宝忠, 郭宝平, 牛憨笨. 多通道门选通纳秒分幅相机[J]. 光学 精密工程, 2007, 15(12): 1963-1968. doi: 10.3321/j.issn:1004-924x.2007.12.022SHANB Z, GUOB P, NIUH B. Multi-channel nano-second framing camera with gate selection[J]. Opt. Precision Eng., 2007, 15(12): 1963-1968.(in Chinese). doi: 10.3321/j.issn:1004-924x.2007.12.022
[15] F MITSUGI, J FURUKAWA, T OHSHIMA et al. Observation of dynamic behavior of gliding arc discharge. The European Physical Journal-Applied Physics, 61, 24308(2013).
[16] 詹昊. 纳秒级分幅超高速视觉成像装置的研制[D]. 武汉: 华中科技大学, 2017.ZHANH. Development of Nanosecond Sub-frame Super-high Speed Visual Imaging Device[D].Wuhan: Huazhong University of Science and Technology, 2017. (in Chinese)
[17] 彭小勋, 叶玉堂, 吴云峰, 等. 数字高速分幅相机中光学分幅系统的设计与分析[J]. 光学与光电技术, 2008, 6(1): 52-54. doi: 10.3969/j.issn.1672-3392.2008.01.015PENGX X, YEY T, WUY F, et al. Design and analysis of optical splitting system for digital high-speed multi-frame gated camera[J]. Optics & Optoelectronic Technology, 2008, 6(1): 52-54.(in Chinese). doi: 10.3969/j.issn.1672-3392.2008.01.015
[18] 李剑, 刘宁文, 肖正飞, 等. 可用于多幅纹影照相的超高速光电分幅相机光学系统设计[J]. 光电工程, 2014, 41(10): 38.LIJ, LIUN W, XIAOZ F, et al. Optical system design of ultra high speed optic electronic framing camera used in shlieren experiment[J]. Opto-Electronic Engineering, 2014, 41(10): 38.(in Chinese)
[19] 江孝国, 王远, 金光, 等. 超高速高性能门控型三分幅相机[J]. 光子学报, 2013, 42(9): 1065-1070. doi: 10.3788/gzxb20134209.1065JIANGX G, WANGY, JING, et al. Three-frame framing camera with ultrahigh speed and high performance[J]. Acta Photonica Sinica, 2013, 42(9): 1065-1070.(in Chinese). doi: 10.3788/gzxb20134209.1065
[20] 田进寿. 条纹及分幅相机技术发展概述[J]. 强激光与粒子束, 2020, 32(11): 200119. doi: 10.11884/HPLPB202032.200119TIANJ S. Introduction to development of streak and framing cameras[J]. High Power Laser and Particle Beams, 2020, 32(11): 200119.(in Chinese). doi: 10.11884/HPLPB202032.200119
[21] 郁道银, 谈恒英. 工程光学[M]. 3版. 北京: 机械工业出版社, 2011.YUD Y, TANH Y. Engineering Optics[M]. 3rd ed. Beijing: China Machine Press, 2011.(in Chinese)
[22] 王力, 贺庚贤, 沈湘衡. 基于面阵CCD的光电测量设备光学系统像面照度不均匀度测量系统[J]. 光电子技术, 2008, 28(3): 212-215. doi: 10.3969/j.issn.1005-488X.2008.03.016WANGL, HEG X, SHENX H. A system for examining the imagine planes' illumination nonuniformity of image-forming system on photoelectric measuring equipment using CCD[J]. Optoelectronic Technology, 2008, 28(3): 212-215.(in Chinese). doi: 10.3969/j.issn.1005-488X.2008.03.016