• Acta Photonica Sinica
  • Vol. 51, Issue 5, 0551309 (2022)
Yi ZHANG1、2, Hanyu FU1, Jie LIANG1, Jia ZHU1, and Lin ZHOU1、*
Author Affiliations
  • 1Photothermal Manipulation Research Center,college of Engineering and Applied Sciences,Nanjing University,Nanjing 210093,China
  • 2School of Information& Elecotronic Engineering(Sussex Artificial Intelligence Institute),Zhejiang Gongshang University,Hangzhou 310018,China
  • show less
    DOI: 10.3788/gzxb20225105.0551309 Cite this Article
    Yi ZHANG, Hanyu FU, Jie LIANG, Jia ZHU, Lin ZHOU. Alkali Metals for Plasmonics:Research Progresses from Foundations to Applications(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551309 Copy Citation Text show less
    References

    [1] R W WOOD. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4, 396-402(1902).

    [2] T W EBBESEN, H J LEZEC, H F GHAEMI et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [3] E OZBAY. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311, 189-193(2006).

    [4] W DU, T WANG, H S CHU et al. Highly efficient on-chip direct electronic–plasmonic transducers. Nature Photonics, 11, 623-627(2017).

    [5] P ENGLEBIENNE, A HOONACKER, M VERHAS. Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy, 17, 255-273(2003).

    [6] P CHRISTOPHER, H XIN, S LINIC. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chemistry, 3, 467-472(2011).

    [7] L ZHOU, Y TAN, J WANG et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 10, 393-398(2016).

    [8] J B KHURGIN. How to deal with the loss in plasmonics and metamaterials. Nature Nanotechnology, 10, 2-6(2015).

    [9] Y WANG, J YU, Y F MAO et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature, 581, 401-405(2020).

    [10] Y JIN, L ZHOU, J YU et al. In operando plasmonic monitoring of electrochemical evolution of lithium metal. Proceedings of the National Academy of Sciences, 115, 11168-11173(2018).

    [11] D PINES. Elementary excitations in solids(2018).

    [12] P DRUDE. Zur elektronentheorie der metalle. Annalen der Physik, 306, 566-613(1900).

    [13] M I STOCKMAN, K KNEIPP, S I BOZHEVOLNYI et al. Roadmap on plasmonics. Journal of Optics, 20, 043001(2018).

    [14] Z HAN, S I BOZHEVOLNYI. Radiation guiding with surface plasmon polaritons. Reports on Progress in Physics, 76, 016402(2012).

    [15] D PINES. Theory of quantum liquids: normal fermi liquids(2018).

    [16] F WANG, Y R SHEN. General properties of local plasmons in metal nanostructures. Physical Review Letters, 97, 206806(2006).

    [17] N YU, P GENEVET, M A KATS et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [18] K KNEIPP, Y WANG, H KNEIPP et al. Single molecule detection using surface enhanced Raman scattering (SERS). Physical Review Letters, 78, 1667(1997).

    [19] T MORI, T MORI, M FUJII et al. Optical properties of low-loss Ag films and nanostructures on transparent substrates. ACS Applied Materials & Interfaces, 10, 8333-8340(2018).

    [20] J SEIDEL, S GRAFSTRÖM, L ENG. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Physical Review Letters, 94, 177401(2005).

    [21] J B KHURGIN, G SUN. Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium. Applied Physics Letters, 100, 011105(2012).

    [22] Z HAN, S I BOZHEVOLNYI. Radiation guiding with surface plasmon polaritons. Reports on Progress in Physics, 76, 016402(2012).

    [23] D ASPNES, E KINSBRON, D BACON. Optical properties of Au: sample effects. Physical Review B, 21, 3290(1980).

    [24] R L OLMON, B SLOVICK, T W JOHNSON et al. Optical dielectric function of gold. Physical Review B, 86, 235147(2012).

    [25] A J HOFFMAN, L ALEKSEYEV, S S HOWARD et al. Negative refraction in semiconductor metamaterials. Nature Materials, 6, 946-950(2007).

    [26] M D ARNOLD, M G BLABER. Optical performance and metallic absorption in nanoplasmonic systems. Optics Express, 17, 3835-3847(2009).

    [27] N V SMITH. Optical constants of sodium and potassium from 0.5 to 4.0 eV by split beam ellipsometry. Physical Review, 183, 634(1969).

    [28] K STURM, L E OLIVEIRA. Wave-vector-dependent plasmon linewidth in the alkali metals. Physical Review B, 24, 3054-3062(1981).

    [29] B W NINHAM, C J POWELL, N SWANSON. Plasmon damping in metals. Physical Review, 145, 209-217(1966).

    [30] S SEGUI, J L GERVASONI, N R ARISTA. Plasmon damping in the free-electron gas model of solids. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 408, 217-222(2017).

    [31] M HASEGAWA, M WATABE. Theory of plasmon damping in metals. I. General formulation and application to an electron gas. Journal of the Physical Society of Japan, 27, 1393-1414(1969).

    [32] M HASEGAWA. Theory of Plasmon Damping in Metals. II. Effects of Electron-Ion Interaction. Journal of the Physical Society of Japan, 31, 649-667(1971).

    [33] K STURM. Pseudopotential theory of the width of the long wavelength plasmon in simple metals. Zeitschrift für Physik B Condensed Matter, 25, 247-253(1976).

    [34] D BELITZ, S D SARMA. Plasmon linewidth in metals and semiconductors: a memory-function approach. Physical Review B, 34, 8264-8269(1986).

    [35] M LIU, M PELTON, P GUYOT-SIONNEST. Reduced damping of surface plasmons at low temperatures. Physical Review B, 79, 035418(2009).

    [36] K STURM. Phonon effects in the optical absorption of the alkali metals. Journal of Physics F: Metal Physics, 2, 816-831(1972).

    [37] P C GIBBONS. Linewidth of the plasma resonance in the alkali metals. Physical Review B, 17, 549-553(1978).

    [38] P C GIBBONS. Damping of plasmons in the alkali metals: Interband transitions and many-electron interactions. Physical Review B, 23, 2536-2541(1981).

    [39] E D PALIK. Handbook of optical constants of solids(1998).

    [40] A PEI, G ZHENG, F SHI et al. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Letters, 17, 1132-1139(2017).

    [41] L J GUO. Recent progress in nanoimprint technology and its applications. Journal of Physics D: Applied Physics, 37, R123(2004).

    [42] S SUN, K Y YANG, C M WANG et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters, 12, 6223-6229(2012).

    [43] M D ARNOLD, M G BLABER. Optical performance and metallic absorption in nanoplasmonic systems. Optics Express, 17, 3835-3847(2009).

    [44] M G BLABER, M D ARNOLD, N HARRIS et al. Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold. Physica B: Condensed Matter, 394, 184-187(2007).

    [45] A RAWASHDEH, S LUPA, W WELCH et al. Sodium surface lattice plasmons. The Journal of Physical Chemistry C, 125, 25148-25154(2021).

    [46] H Y YE, C B CHEN, J Y ZHOU et al. Sodium-based surface plasmon resonances for high-performance optical sensing in the near infrared. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-8(2021).

    [47] L WEN, J LI, Y DONG et al. High-efficiency narrow-band plasmonic hot electron conversion from nanoscale sodium–silicon heterostructures. Journal of Applied Physics, 128, 223103(2020).

    [48] B BOZLEE, S CLARK, C MARR et al. Characterization and surface‐enhanced raman spectroscopy of Alkali metal sols. Journal of Raman Spectroscopy, 27, 75-82(1996).

    [49] Y JIN, J LIANG, S WU et al. Electrical dynamic switching of magnetic plasmon resonance based on selective lithium deposition. Advanced Materials, 32, 2000058(2020).

    [50] M WU, Z ZHANG, X XU et al. Seeded growth of large single-crystal copper foils with high-index facets. Nature, 581, 406-410(2020).

    [51] H U YANG, J D'ARCHANGEL, M L SUNDHEIMER et al. Optical dielectric function of silver. Physical Review B, 91, 235137(2015).

    [52] T INAGAKI, L C EMERSON, E T ARAKAWA et al. Optical properties of solid Na and Li between 0.6 and 3.8 eV. Physical Review B, 13, 2305(1976).

    [53] B Y XIA, H B WU, X WANG et al. Highly concave platinum nanoframes with high‐index facets and enhanced electrocatalytic properties. Angewandte Chemie, 125, 12563-12566(2013).

    [54] T INAGAKI, E T ARAKAWA, R D BIRKHOFF et al. Optical properties of liquid Na between 0.6 and 3.8 eV. Physical Review B, 13, 5610(1976).

    [55] N FANG, H LEE, C SUN et al. Sub–diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [56] J HECHT. Formation and properties of Na smoke particles. Journal of Applied Physics, 50, 7186-7194(1979).

    [57] K KALANTAR-ZADEH, J TANG, T DAENEKE et al. Emergence of liquid metals in nanotechnology. ACS Nano, 13, 7388-7395(2019).

    [58] Y WANG, P LANDREMAN, D SCHOEN et al. Electrical tuning of phase-change antennas and metasurfaces. Nature Nanotechnology, 16, 667-672(2021).

    [59] C VOISIN, FATTI NDEL, D CHRISTOFILOS et al. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. The Journal of Physical Chemistry B, 105, 2264-2280(2001).

    Yi ZHANG, Hanyu FU, Jie LIANG, Jia ZHU, Lin ZHOU. Alkali Metals for Plasmonics:Research Progresses from Foundations to Applications(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551309
    Download Citation