• High Power Laser and Particle Beams
  • Vol. 32, Issue 1, 011009 (2020)
Shijia Sun1, Fei Lou2, Zhoubin Lin3, Degao Zhong1, and Bing Teng1、*
Author Affiliations
  • 1College of Physics, Qingdao University, Qingdao 266071, China
  • 2School of Mathematics and Physics, QingdaoUniversity of Science and Technology, Qingdao 266061, China
  • 3Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • show less
    DOI: 10.11884/HPLPB202032.190451 Cite this Article
    Shijia Sun, Fei Lou, Zhoubin Lin, Degao Zhong, Bing Teng. Progress of the research on Yb3+-doped femtosecond laser crystals[J]. High Power Laser and Particle Beams, 2020, 32(1): 011009 Copy Citation Text show less
    3at.%Yb:SYB crystals grown by Czochralski method[89]
    Fig. 1. 3at.%Yb:SYB crystals grown by Czochralski method[89]
    Polarized absorption cross-sections of 3at.%Yb:SYB crystal[89]
    Fig. 2. Polarized absorption cross-sections of 3at.%Yb:SYB crystal[89]
    Polarized emission cross-sections of 3at.%Yb:SYB crystal[89]
    Fig. 3. Polarized emission cross-sections of 3at.%Yb:SYB crystal[89]
    Fluorescence decay curve of 3at.%Yb:SYB crystal[89]
    Fig. 4. Fluorescence decay curve of 3at.%Yb:SYB crystal[89]
    Schematic diagram of laser experimental setup[89]
    Fig. 5. Schematic diagram of laser experimental setup[89]
    CW laser output versus incident pump powers of 3at.%Yb:SYB crystal[89]
    Fig. 6. CW laser output versus incident pump powers of 3at.%Yb:SYB crystal[89]
    Laser emission spectra of 3at.%Yb:SYB crystal[89]
    Fig. 7. Laser emission spectra of 3at.%Yb:SYB crystal[89]
    Experimental setup of Kerr-lens mode-locked laser[90]
    Fig. 8. Experimental setup of Kerr-lens mode-locked laser[90]
    Average output power and pulse duration of 3at.%Yb:SYB laser[90]
    Fig. 9. Average output power and pulse duration of 3at.%Yb:SYB laser[90]
    Autocorrelation trace and spectrum of 3at.%Yb:SYB pulse laser[90]
    Fig. 10. Autocorrelation trace and spectrum of 3at.%Yb:SYB pulse laser[90]
    11at.%Yb:SYB crystal grown by Czochralski method[91]
    Fig. 11. 11at.%Yb:SYB crystal grown by Czochralski method[91]
    Experimental setup of the SESAM mode-locked laser[91]
    Fig. 12. Experimental setup of the SESAM mode-locked laser[91]
    Average output versus incident pump powers of 11at.%Yb:SYB crystal[91]
    Fig. 13. Average output versus incident pump powers of 11at.%Yb:SYB crystal[91]
    Autocorrelation traces and laser emission spectra of 11at.%Yb:SYB mode-locked pulses[91]
    Fig. 14. Autocorrelation traces and laser emission spectra of 11at.%Yb:SYB mode-locked pulses[91]
    6.3at.%Yb:SGB crystal grown by Czochralski method[94]
    Fig. 15. 6.3at.%Yb:SGB crystal grown by Czochralski method[94]
    The structure of 6.3at.%Yb:SGB crystal[94]
    Fig. 16. The structure of 6.3at.%Yb:SGB crystal[94]
    Polarized absorption cross-sections and fluorescence spectra of 6.3at.%Yb:SGB at 300 K[94]
    Fig. 17. Polarized absorption cross-sections and fluorescence spectra of 6.3at.%Yb:SGB at 300 K[94]
    Fluorescence spectra of 6.3at.%Yb:SGB crystal at 77 K and energy level schema of Yb3+ ions[94]
    Fig. 18. Fluorescence spectra of 6.3at.%Yb:SGB crystal at 77 K and energy level schema of Yb3+ ions[94]
    Fluorescence decay curve of 6.3at.%Yb:SGB crystal[94]
    Fig. 19. Fluorescence decay curve of 6.3at.%Yb:SGB crystal[94]
    Polarized emission and gain cross-sections of 6.3at.%Yb:SGB crystal[94]
    Fig. 20. Polarized emission and gain cross-sections of 6.3at.%Yb:SGB crystal[94]
    CW output versus absorbed pump powers of 6.3at.%Yb:SGB crystal[94]
    Fig. 21. CW output versus absorbed pump powers of 6.3at.%Yb:SGB crystal[94]
    Laser emission spectra of 6.3at.%Yb:SGB crystal[94]
    Fig. 22. Laser emission spectra of 6.3at.%Yb:SGB crystal[94]
    matrix crystalabsorption spectrum FWHM/nmemission spectrum FWHM/nmwavelength/nmpulse width/fsaverage power/mWoptical-optical conversion efficiency/%reference
    YCa4O(BO3)33441 055 1 050 35 46 36 46 2.6 4.2 [14-15]
    GdCa4O(BO3)33441 045 1 030 90 350 40 2 [16-17]
    Sr3Y(BO3)36601 062 1 068 69 86 80 300 7.3 12 [18-19]
    YAl3(BO3)422251 05087612.5[20-21]
    LaSc3(BO3)425331 05367 58 39 73 2 3.7 [22-23]
    KY(WO4)23.5241 039 1 033 65 114 22 5 000 2 33.3 [24-25]
    KGd(WO4)23.5251 040 1 038 67 162 3 000 8 800 10 32.1 [26-27]
    CaGdAlO46601 063 1 050 32 94 90 12 500 2.5 20 [28-29]
    CaYAlO411611 059 1 045 33 156 36 740 2.9 19.2 [30-31]
    Y3Al5O12491 060 1 051 35 100 107 151 2.3 3.2 [32-33]
    SrY4(SiO4)3O 7731 066 1 068 70 94 156 110 3.9 3.1 [34-35]
    Y2SiO56481 041 1 044 122 198 410 2 610 2.7 17.4 [36]
    Lu2SiO56671 059233 260 1 100 2 600 7.3 17.4 [36]
    Gd2SiO56721 0313433967.9[37]
    CaF218711 04965 68 35 2 400 3.2 33 [38-39]
    Na:CaF224/565/151 039175 190 352 510 7.8 6.6 [40]
    YYF411401 033 1 031 170 210 130 250 8.3 14.3 [41]
    YLiF411401 028 1 024 196 233 54 120 1.4 2.5 [42]
    Table 1. Spectra and laser parameters of Yb3+-doped femtosecond laser crystals
    Shijia Sun, Fei Lou, Zhoubin Lin, Degao Zhong, Bing Teng. Progress of the research on Yb3+-doped femtosecond laser crystals[J]. High Power Laser and Particle Beams, 2020, 32(1): 011009
    Download Citation