• Frontiers of Optoelectronics
  • Vol. 14, Issue 3, 263 (2021)
Dao ZHANG1, Xiaofeng LIU2, and Jianrong QIU1,3,*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation and School of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 3Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-020-1009-z Cite this Article
    Dao ZHANG, Xiaofeng LIU, Jianrong QIU. 3D printing of glass by additive manufacturing techniques:a review[J]. Frontiers of Optoelectronics, 2021, 14(3): 263 Copy Citation Text show less
    References

    [1] Wong K V, Hernandez A. A review of additive manufacturing. ISRN Mechanical Engineering, 2012, 2012: 1–10

    [2] Jariwala S H, Lewis G S, Bushman Z J, Adair J H, Donahue H J. 3D printing of personalized artificial bone scaffolds. 3D Printing and Additive Manufacturing, 2015, 2(2): 56–64

    [3] Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review. International Journal of Advanced Manufacturing Technology, 2015, 83(1–4): 389–405

    [4] Balling P, Schou J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Reports on Progress in Physics, 2013, 76(3): 036502

    [5] Chia H N,Wu B M. Recent advances in 3D printing of biomaterials. Journal of Biological Engineering, 2015, 9(1): 4

    [6] Berman B. 3-D printing: the new industrial revolution. Business Horizons, 2012, 55(2): 155–162

    [7] Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials Today, 2013, 16(12): 496–504

    [8] Gross B C, Erkal J L, Lockwood S Y, Chen C, Spence D M. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 2014, 86(7): 3240–3253

    [9] iu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H. Threedimensional photonic metamaterials at optical frequencies. Nature Materials, 2008, 7(1): 31–37

    [10] Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann C M, Unterhinninghofen R, Kauczor H U, Giesel F L. 3D printing based on imaging data: review of medical applications. International Journal of Computer Assisted Radiology and Surgery, 2010, 5(4): 335–341

    [11] Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: a review and prospective. Composites, Part B, Engineering, 2017, 110: 442–458

    [12] Yap C Y, Chua C K, Dong Z L, Liu Z H, Zhang D Q, Loh L E, Sing S L. Review of selective laser melting: materials and applications. Applied Physics Reviews, 2015, 2(4): 041101

    [13] Ikushima A J, Fujiwara T, Saito K. Silica glass: a material for photonics. Journal of Applied Physics, 2000, 88(3): 1201–1213

    [14] Friend J, Tan H H, Spencer M J S, Morishita T, Bassett M R. Density functional theory calculations of phenol-modified monolayer silicon nanosheets. In: Proceedings of SPIE Micro/Nano Materials, Devices, and Systems. Melbourne: SPIE, 2013, 89230D

    [15] Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014, 35(1): 49–62

    [16] Elvira K S, Casadevall i Solvas X, Wootton R C, deMello A J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nature Chemistry, 2013, 5(11): 905–915

    [17] Kotz F, Plewa K, Bauer W, Schneider N, Keller N, Nargang T, Helmer D, Sachsenheimer K, Sch?fer M, Worgull M, Greiner C, Richter C, Rapp B E. Liquid glass: a facile soft replication method for structuring glass. Advanced Materials, 2016, 28(23): 4646–4650

    [18] Kotz F, Risch P, Arnold K, Sevim S, Puigmartí-Luis J, Quick A, Thiel M, Hrynevich A, Dalton P D, Helmer D, Rapp B E. Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. Nature Communications, 2019, 10(1): 1439

    [19] Goh G D, Yap Y L, Tan H K J, Sing S L, Goh G L, Yeong W Y. Process–structure–properties in polymer additive manufacturing via material extrusion: a review. Critical Reviews in Solid State and Material Sciences, 2020, 45(2): 113–133

    [20] Huang J, Chen Q, Jiang H, Zou B, Li L, Liu J, Yu H. A survey of design methods for material extrusion polymer 3D printing. Virtual and Physical Prototyping, 2020, 15(2): 148–162

    [21] Kuznetsov V E, Solonin A N, Tavitov A G, Urzhumtsev O D, Vakulik A H. Increasing strength of FFF three-dimensional printed parts by influencing on temperature-related parameters of the process. Rapid Prototyping Journal, 2018, 26: 107–121

    [22] ?wik?a G, Grabowik C, Kalinowski K, Paprocka I, Ociepka P. The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conference Series. Materials Science and Engineering, 2017, 227: 012033

    [23] Wittbrodt B, Pearce J M. The effects of PLA color on material properties of 3-D printed components. Additive Manufacturing, 2015, 8: 110–116

    [24] Thirunahary S, Ketham M M R, Akhil H, Mavoori N K. A critical review on of 3D printing materials and details of materials used in FDM. International Journal of Scientific Research in Science, Engineering and Technology, 2017, 3(2): 353–361

    [25] Polak R, Sedlacek F, Raz K. Determination of FDM printer settings with regard to geometrical accuracy. In: Proceedings of the 28th International DAAAM Symposium. 2017, 0561–0566

    [26] Sood A K, Ohdar R K, Mahapatra S S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design, 2010, 31(1): 287–295

    [27] Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polymer Testing, 2018, 69: 157–166

    [28] Choi Y H, Kim C M, Jeong H S, Youn J H. Influence of bed temperature on heat shrinkage shape error in FDM additive manufacturing of the ABS-engineering plastic. World Journal of Engineering and Technology, 2016, 4(3): 186–192

    [29] Soares J B, Finamor J, Silva F P, Roldo L, Candido L H. Analysis of the influence of polylactic acid (PLA) colour on FDM 3D printing temperature and part finishing. Rapid Prototyping Journal, 2018, 24 (8): 1305–1316

    [30] Klein J, Stern M, Franchin G, Kayser M, Inamura C, Dave S, Weaver J, Houk P, Colombo P, Yang M, Oxman N. Additive manufacturing of optically transparent glass. 3D Printing and Additive Manufacturing, 2015, 2(3): 92–105

    [31] Baudet E, Ledemi Y, Larochelle P, Morency S, Messaddeq Y. 3Dprinting of arsenic sulfide chalcogenide glasses. Optical Materials Express, 2019, 9(5): 2307

    [32] Engineering Niomta. Progress has been made in research on 3D printing technology and equipment for glass at Ningbo Institute of Materials Technique and Engineering. 2015 (in Chinese)

    [33] Garg A, Bhattacharya A, Batish A. On surface finish and dimensional accuracy of FDM parts after cold vapor treatment. Materials and Manufacturing Processes, 2016, 31(4): 522–529

    [34] Li G. Effect of FDM rapid prototyping process parameter on step effect. Mechanical Engineering & Automation, 2017, 12(6): 131– 135 (in Chinese)

    [35] Ceretti E, Ginestra P, Neto P I, Fiorentino A, Da Silva J V L. Multilayered scaffolds production via fused deposition modeling (FDM) using an open source 3D printer: process parameters optimization for dimensional accuracy and design reproducibility. Procedia CIRP, 2017, 65: 13–18

    [36] Kiendl J, Gao C. Controlling toughness and strength of FDM 3Dprinted PLA components through the raster layup. Composites Part B, Engineering, 2020, 180: 107562

    [37] Mohan N, Senthil P, Vinodh S, Jayanth N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual and Physical Prototyping, 2017, 12(1): 47–59

    [38] Hambali R H, Cheong K M, Azizan N. Analysis of the influence of chemical treatment to the strength and surface roughness of FDM. IOP Conference Series. Materials Science and Engineering, 2017, 210: 012063

    [39] Hong H, Seo Y B, Kim D Y, Lee J S, Lee Y L, Lee H, Ajiteru O, Sultan MT, Lee O J, Kin S H, Park C H. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials, 2018, 232: 119679

    [40] Kim S H, Yeon Y K, Lee JM, Chao J R, Lee Y J, Seo Y B, SultanM T, Lee O J, Lee J S, Yoon S I, Hong I S, Khang G, Lee S J, Yoo J J, Park C H. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature Communications, 2018, 9(1): 1620

    [41] Manapat J Z, Mangadlao J D, Tiu B D, Tritchler G C, Advincula R C. High-strength stereolithographic 3D printed nanocomposites: graphene oxide metastability. ACS Applied Materials & Interfaces, 2017, 9(11): 10085–10093

    [42] Kotz F, Arnold K, Bauer W, Schild D, Keller N, Sachsenheimer K, Nargang T M, Richter C, Helmer D, Rapp B E. Three-dimensional printing of transparent fused silica glass. Nature, 2017, 544(7650): 337–339

    [43] Liu C, Qian B, Ni R, Liu X, Qiu J. 3D printing of multicolor luminescent glass. RSC Advances, 2018, 8(55): 31564–31567

    [44] Sadeqi A, Rezaei Nejad H, Owyeung R E, Sonkusale S. Three dimensional printing of metamaterial embedded geometrical optics (MEGO). Microsystems & Nanoengineering, 2019, 5(1): 16

    [45] Waheed S, Cabot JM, Macdonald N P, Lewis T, Guijt RM, Paull B, Breadmore M C. 3D printed microfluidic devices: enablers and barriers. Lab on a Chip, 2016, 16(11): 1993–2013

    [46] Strano G, Hao L, Everson R M, Evans K E. A new approach to the design and optimisation of support structures in additive manufacturing. International Journal of Advanced Manufacturing Technology, 2012, 66(9–12): 1247–1254

    [47] Yu E A, Yeom J, Tutum C C, Vouga E, Miikkulainen R. Evolutionary decomposition for 3D printing. In: Proceedings of the Genetic and Evolutionary Computation Conference. Berlin: ACM Publication, 2017, 1272–1279

    [48] Liu C, Qian B, Liu X, Tong L, Qiu J. Additive manufacturing of silica glass using laser stereolithography with a top-down approach and fast debinding. RSC Advances, 2018, 8(29): 16344–16348

    [49] Wu D, Zhao Z, Zhang Q, Qi H J, Fang D. Mechanics of shape distortion of DLP 3D printed structures during UV post-curing. Soft Matter, 2019, 15(30): 6151–6159

    [50] Komissarenko D A, Sokolov P S, Evstigneeva A D, Shmeleva I A, Dosovitsky A E. Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts. Materials (Basel), 2018, 11(12): 2350

    [51] Moore D G, Barbera L, Masania K, Studart A R. Three-dimensional printing of multicomponent glasses using phase-separating resins. Nature Materials, 2020, 19(2): 212–217

    [52] Cooperstein I, Shukrun E, Press O, Kamyshny A, Magdassi S. Additive manufacturing of transparent silica glass from solutions. ACS Applied Materials & Interfaces, 2018, 10(22): 18879–18885

    [53] Voet V S D, Strating T, Schnelting G H M, Dijkstra P, Tietema M, Xu J, Woortman A J J, Loos K, Jager J, Folkersma R. Biobased acrylate photocurable resin formulation for stereolithography 3D printing. ACS Omega, 2018, 3(2): 1403–1408

    [54] Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I. Ceramic components manufacturing by selective laser sintering. Applied Surface Science, 2007, 254(4): 989–992

    [55] Rao H, Giet S, Yang K, Wu X, Davies C H J. The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting. Materials & Design, 2016, 109: 334–346

    [56] Rao J H, Zhang Y, Fang X, Chen Y, Wu X, Davies C H J. The origins for tensile properties of selective laser melted aluminium alloy A3

    [57] Additive Manufacturing, 2017, 17: 113–122 57. Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process. Applied Surface Science, 2007, 253 (19): 8064–8069

    [58] Ahmed N. Direct metal fabrication in rapid prototyping: a review. Journal of Manufacturing Processes, 2019, 42: 167–191

    [59] Klocke F, McClung A, Ader C. Direct laser sintering of borosilicate glass. In: Proceedings of the 15th Annual Symposium on Solid Freeform Fabrication. Austi: The University of Texas, 2004, 214– 219

    [60] Rahmani R, Rosenberg M, Ivask A, Kollo L. Comparison of mechanical and antibacterial properties of TiO2/Ag ceramics and Ti6Al4V-TiO2/Ag composite materials using combined SLM-SPS techniques. Metals, 2019, 9(8): 874

    [61] Tey C F, Tan X, Sing S L, Yeong W Y. Additive manufacturing of multiple materials by selective laser melting: Ti-alloy to stainless steel via a Cu-alloy interlayer. Additive Manufacturing, 2020, 31: 100970

    [62] Kuo C N, Chua C K, Peng P C, Chen YW, Sing S L, Huang S, Su Y L. Microstructure evolution and mechanical property response via 3D printing parameter development of Al–Sc alloy. Virtual and Physical Prototyping, 2020, 15(1): 120–129

    [63] Luo J, Edward H P, Kinzel C. Additive manufacturing of glass. Journal of Manufacturing Science and Engineering, 2014, 136(6): 061024

    [64] Luo J, Gilbert L J, Bristow D A, Landers R G, Goldstein J T, Urbas A M, Kinzel E C. Additive manufacturing of glass for optical applications. In: Proceedings of SPIE Laser 3D Manufacturing III. California: SPIE, 2016, 97380Y

    [65] Luo J, Luke J G, Qu C, Robert G L, Douglas A B, Edward C K. Additive manufacturing of optically transparent soda-lime glass using a filament-fed process. Journal of Manufacturing Science and Engineering, 2017, 139(6): 061006

    [66] Ko S H, Pan H, Grigoropoulos C P, Luscombe C K, Fréchet J M J, Poulikakos D. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology, 2007, 18 (34): 345202

    [67] Park B K, Kim D, Jeong S, Moon J, Kim J S. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films, 2007, 515(19): 7706–7711

    [68] Nguyen D T, Meyers C, Yee T D, Dudukovic N A, Destino J F, Zhu C, Duoss E B, Baumann T F, Suratwala T, Smay J E, Dylla-Spears R. 3D-printed transparent glass. Advanced Materials, 2017, 29(26): 1701181

    [69] Destino J F, Dudukovic N A, Johnson M A, Nguyen D T, Yee T D, Egan G C, Sawvel A M, Steele W A, Baumann T F, Duoss E B, Suratwala T, Dylla-Spears R. 3D printed optical quality silica and silica-titania glasses from sol-gel feedstocks. Advanced Materials Technologies, 2018, 3(6): 1700323

    [70] Dudukovic N A, Wong L L, Nguyen D T, Destino J F, Yee T D, Ryerson F J, Suratwala T, Duoss E B, Dylla-Spears R. Predicting nanoparticle suspension viscoelasticity for multimaterial 3D printing of silica–titania glass. ACS Applied Nano Materials, 2018, 1(8): 4038–4044

    [71] Sasan K, Lange A, Yee T D, Dudukovic N, Nguyen D T, JohnsonM A, Herrera O D, Yoo J H, Sawvel A M, Ellis M E, Mah C M, Ryerson R, Wong L L, Suratwala T, Destino J F, Dylla-Spears R. Additive manufacturing of optical quality germania-silica glasses. ACS Applied Materials & Interfaces, 2020, 12(5): 6736–6741

    [72] Li V C, Dunn C K, Zhang Z, Deng Y, Qi H J. Direct ink write (DIW) 3D printed cellulose nanocrystal aerogel structures. Scientific Reports, 2017, 7(1): 8018

    [73] Yuk H, Zhao X. A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Advanced Materials, 2018, 30(6): 1704028

    [74] Lowell D, George D, Lutkenhaus J, Tian C, Adewole M, Philipose U, Zhang H, Lin Y. Flexible holographic fabrication of 3D photonic crystal templates with polarization control through a 3D printed reflective optical element. Micromachines, 2016, 7(7): 128

    [75] Jonu?auskas L, Juodkazis S, Malinauskas M. Optical 3D printing: bridging the gaps in the mesoscale. Journal of Optics, 2018, 20(5): 053001

    [76] Kotz F, Schneider N, Striegel A,Wolfschl?ger A, Keller N,Worgull M, Bauer W, Schild D, Milich M, Greiner C, Helmer D, Rapp B E. Glassomer-processing fused silica glass like a polymer. Advanced Materials, 2018, 30(22): 1707100

    [77] Thiele S, Arzenbacher K, Gissibl T, Giessen H, Herkommer A M. 3D-printed eagle eye: compound microlens system for foveated imaging. Science Advances, 2017, 3(2): e1602655

    [78] Cook K, Canning J, Leon-Saval S, Reid Z, Hossain M A, Comatti J E, Luo Y, Peng G D. Air-structured optical fiber drawn from a 3Dprinted preform. Optics Letters, 2015, 40(17): 3966–3969

    [79] Gissibl T, Thiele S, Herkommer A, Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics, 2016, 10(8): 554–560

    [80] Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3Dprinting revolution in microfluidics. Lab on a Chip, 2016, 16(10): 1720–1742

    [81] Weisgrab G, Ovsianikov A, Costa P F. Functional 3D printing for microfluidic chips. Advanced Materials Technologies, 2019, 4(10): 1900275

    [82] He Y, Wu Y, Fu J, Gao Q, Qiu J. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis, 2016, 28(8): 1658–1678

    [83] Lee J M, Zhang M, Yeong W Y. Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluidics and Nanofluidics, 2016, 20(1): 5

    [84] Yazdi A, Popma A, Wong W, Nguyen T, Pan Y, Xu J. 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluidics and Nanofluidics, 2016, 20(3): 50

    [85] Hinton T J, Hudson A, Pusch K, Lee A, Feinberg A W. 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomaterials Science & Engineering, 2016, 2(10): 1781–1786

    [86] Trantidou T, Elani Y, Parsons E, Ces O. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsystems & Nanoengineering, 2017, 3(1): 16091

    [87] Lin Z J, Xu J, Song Y P, Li X L,Wang P, Chu W,Wang Z H, Cheng Y. Freeform microfluidic networks encapsulated in laser-printed 3D macroscale glass objects. Advanced Materials Technologies, 2020, 5(2): 1900989

    Dao ZHANG, Xiaofeng LIU, Jianrong QIU. 3D printing of glass by additive manufacturing techniques:a review[J]. Frontiers of Optoelectronics, 2021, 14(3): 263
    Download Citation