• Journal of Electronic Science and Technology
  • Vol. 22, Issue 1, 100246 (2024)
Peng Wang1,2,*, Ji Guo1, and Lin-Feng Li3
Author Affiliations
  • 1School of Finance and Economics, Xizang Minzu University, Xianyang, 712082, China
  • 2Research Center for Quality Development of Xizang Special Industries, Xianyang, 712082, China
  • 3School of Computer Science and Technology, Xinjiang University, Urumqi, 830017, China
  • show less
    DOI: 10.1016/j.jnlest.2024.100246 Cite this Article
    Peng Wang, Ji Guo, Lin-Feng Li. Machine learning model based on non-convex penalized huberized-SVM[J]. Journal of Electronic Science and Technology, 2024, 22(1): 100246 Copy Citation Text show less

    Abstract

    The support vector machine (SVM) is a classical machine learning method. Both the hinge loss and least absolute shrinkage and selection operator (LASSO) penalty are usually used in traditional SVMs. However, the hinge loss is not differentiable, and the LASSO penalty does not have the Oracle property. In this paper, the huberized loss is combined with non-convex penalties to obtain a model that has the advantages of both the computational simplicity and the Oracle property, contributing to higher accuracy than traditional SVMs. It is experimentally demonstrated that the two non-convex huberized-SVM methods, smoothly clipped absolute deviation huberized-SVM (SCAD-HSVM) and minimax concave penalty huberized-SVM (MCP-HSVM), outperform the traditional SVM method in terms of the prediction accuracy and classifier performance. They are also superior in terms of variable selection, especially when there is a high linear correlation between the variables. When they are applied to the prediction of listed companies, the variables that can affect and predict financial distress are accurately filtered out. Among all the indicators, the indicators per share have the greatest influence while those of solvency have the weakest influence. Listed companies can assess the financial situation with the indicators screened by our algorithm and make an early warning of their possible financial distress in advance with higher precision.
    $ \mathop {{\rm{min}} }\limits_{{\beta _0}{\rm{,}}{\Cambriabfont\text{β}}} \left( {{1 \mathord{\left/ {\vphantom {1 n}} \right. } n}} \right)\sum\limits_{i = 1}^n {{{\left[ {1 - {y_i}\left( {{\beta _0} + {\mathbf{x}}_i^{\text{T}}{\Cambriabfont\text{β}}} \right)} \right]}_ + } + \left( {{\lambda \mathord{\left/ {\vphantom {\lambda 2}} \right. } 2}} \right)} \left\| {\Cambriabfont\text{β}} \right\|_2^2 $()

    View in Article

    $ \mathop {{\rm{min}} }\limits_{{\beta _0}{\rm{,}}{\Cambriabfont\text{β}}} \left( {{1 \mathord{\left/ {\vphantom {1 n}} \right. } n}} \right)\sum\limits_{i = 1}^n {{l_\delta }\left( {{y_i}\left( {{\beta _0} + {\mathbf{x}}_i^{\text{T}}{\Cambriabfont\text{β}}} \right)} \right)} + \sum\limits_{j = 1}^p {{P_\lambda }\left( {\left| {{\beta _j}} \right|} \right)} $(1)

    View in Article

    $ {l_\delta }(t) = \left\{ {0,t>1(1t)2/2δ,1δ<t11tδ/2,t1δ} \right. $()

    View in Article

    $ \mathop {\lim }\limits_{\delta \to {0^ + }} {l_\delta }(t) = {[1 - t]_ + } = \left\{ {1tt<10t1.} \right. $()

    View in Article

    $ {P_\lambda }(x) = \lambda \int_0^{|x|} {{\rm{min}} \{ 1{\rm{,}}{\text{ }}{{{{[a - t/\lambda ]}_ + }} \mathord{\left/ {\vphantom {{{{[a - t/\lambda ]}_ + }} {(a - 1)}}} \right. } {(a - 1)}}\} } {\text{d}}t{\text{, }}a > 2{\mathrm{.}} $()

    View in Article

    $ {P_\lambda }(x) = \lambda \int_0^{|x|} {{{[1 - t/(a\lambda )]}_ + }} {\text{d}}t{\text{, }}a > 1{\mathrm{.}} $()

    View in Article

    $ F\left( {{\beta _j}|{{\tilde \beta }_0}{\text{, }}\tilde {\Cambriabfont\text{β}}} \right) = \left( {1/n} \right)\sum\limits_{i = 1}^n {{l_\delta }\left\{ {{r_i} + {y_i}{x_{i{\text{,}}j}}\left( {{\beta _j} - {{\tilde \beta }_j}} \right)} \right\}} + {P_\lambda }\left( {\left| {{\beta _j}} \right|} \right) $(2)

    View in Article

    $ {P_{{\lambda _1}}}\left( {|{\beta _j}|} \right) \approx {P_{{\lambda _1}}}\left( {|{{\tilde \beta }_j}|} \right) + {P'_{{\lambda _1}}}\left( {|{\beta _j}|} \right)\left( {|{\beta _j}| - |{{\tilde \beta }_j}|} \right){\text{, }}|{\beta _j}| \approx |{\tilde \beta _j}| {\mathrm{.}} $(3)

    View in Article

    $ \hat F\left( {{\beta _j}|{{\tilde \beta }_0}{\rm{,}}{\text{ }}\tilde {\Cambriabfont\text{β}}} \right) = \left( {{1 \mathord{\left/ {\vphantom {1 n}} \right. } n}} \right)\sum\limits_{i = 1}^n {{l_\delta }\left( {{r_i}} \right)} + \left( {{1 \mathord{\left/ {\vphantom {1 n}} \right. } n}} \right)\sum\limits_{i = 1}^n {{l_\delta' }\left( {{r_i}} \right)} {y_i}{x_{i{\text{,}}j}}\left( {{\beta _j} - {{\tilde \beta }_j}} \right) + \left( {{1 \mathord{\left/ {\vphantom {1 \delta }} \right. } \delta }} \right){\left( {{\beta _j} - {{\tilde \beta }_j}} \right)^2} {\mathrm{.}} $(4)

    View in Article

    $ \hat \beta _j^{{\text{new}}} = \mathop {{\rm{arg}} {\rm{min}} }\limits_{{\beta _0}} \hat F\left( {{\beta _j}|{{\tilde \beta }_0}{\rm{,}}{\text{ }}\tilde {\Cambriabfont\text{β}}} \right) = \left( {{\delta \mathord{\left/ {\vphantom {\delta 2}} \right. } 2}} \right)S\left( {z{\rm{,}}{\text{ }}{{P'}_{{\lambda _1}}}\left( {\left| {{{\tilde \beta }_j}} \right|} \right)} \right) $(5)

    View in Article

    $ S\left(z\rm{,}\text{ }t\right)=\left[\left|z\right|-t\right]_+\text{sign}\left(z\right) $()

    View in Article

    $ z = \left( {{2 \mathord{\left/ {\vphantom {2 \delta }} \right. } \delta }} \right){\tilde \beta _j} - \left( {{1 \mathord{\left/ {\vphantom {1 n}} \right. } n}} \right)\sum\limits_{i = 1}^n {{l_\delta' }({r_i})} {y_i}{x_{i{\text{,}}j}}{\mathrm{.}} $()

    View in Article

    $ \hat F\left( {{\beta _0}|{{\tilde \beta }_0}{\rm{,}}\;\tilde {\Cambriabfont\text{β}}} \right) = \left( {{1 \mathord{\left/ {\vphantom {1 n}} \right. } n}} \right)\sum\limits_{i = 1}^n {{l_\delta }\left( {{r_i}} \right) + \left( {{1 \mathord{\left/ {\vphantom {1 n}} \right. } n}} \right)\sum\limits_{i = 1}^n {{l_\delta' }\left( {{r_i}} \right)} {y_i}\left( {{\beta _0} - {{\tilde \beta }_0}} \right) + \left( {{1 \mathord{\left/ {\vphantom {1 \delta }} \right. } \delta }} \right){{\left( {{\beta _0} - {{\tilde \beta }_0}} \right)}^2}} $(6)

    View in Article

    $ \hat \beta _0^{{\text{new}}} = \mathop {{\rm{arg}} {\rm{min}} }\limits_{{\beta _0}} \hat F\left( {{\beta _0}|{{\tilde \beta }_0}{\rm{,}}\;\tilde {\Cambriabfont\text{β}}} \right) = {\tilde \beta _0} - \left( {{\delta \mathord{\left/ {\vphantom {\delta {2n}}} \right. } {2n}}} \right)\sum\limits_{i = 1}^n {{l_\delta' }\left( {{r_i}} \right){y_i}} {\mathrm{.}} $(7)

    View in Article

    $ {{\Cambriabfont\text{β}}^*} = \mathop {{\rm{arg}} {\rm{min}} }\limits_{\Cambriabfont\text{β}} L\left( {\Cambriabfont\text{β}} \right) = \mathop {{\rm{arg}} {\rm{min}} \,{E}}\limits_{\Cambriabfont\text{β}} \left( {{l_\delta }\left( {y{{\mathbf{x}}^{\text{T}}}{\Cambriabfont\text{β}}} \right)} \right) {\mathrm{,}} $()

    View in Article

    $ \hat {\Cambriabfont\text{β}} = \mathop {{\rm{arg}} {\rm{min}} }\limits_{\Cambriabfont\text{β}} {L_n}({\Cambriabfont\text{β}}) = \mathop {{\rm{arg}} {\rm{min}} }\limits_{\Cambriabfont\text{β}} \left\{ {\left( {{1 \mathord{\left/ {\vphantom {1 n}} \right. } n}} \right)\sum\limits_{i = 1}^n {{l_\delta }\left( {{y_i}{\mathbf{x}}_i^{\text{T}}{\Cambriabfont\text{β}}} \right)} } \right\} = \mathop {{\rm{arg}} {\rm{min}} }\limits_{{{\Cambriabfont\text{β}}_{{A^c}}} = {\mathbf{0}}} \left\{ {\left( {{1 \mathord{\left/ {\vphantom {1 n}} \right. } n}} \right)\sum\limits_{i = 1}^n {{l_\delta }\left( {{y_i}{\mathbf{x}}_{i{\mathrm{,}}A}^{\text{T}}{{\Cambriabfont\text{β}}_A}} \right)} } \right\} $()

    View in Article

    $ \left|l'(t)\right|\le M_1\left(\left|t\right|+1\right)\rm{,}\text{ }\partial l'(t)\le M_2\rm{,}\text{ }\forall t. $()

    View in Article

    $ {\left\| {{{ \hat {\Cambriabfont\text{β}}}_A} - {\Cambriabfont\text{β}}_A^*} \right\|_2} = {O_p}\left( {\sqrt {{q_n}/n} } \right) $()

    View in Article

    $ \rm{Pr} \left\{ {\mathop {{\rm{max}} }\limits_{j \in {A^c}} \left| {\left( {{1 \mathord{\left/ {\vphantom {1 n}} \right. } n}} \right)\sum\limits_{i = 1}^n {{y_i}{x_{i{\mathrm{,}}j}}{l_\delta' }\left( {{y_i}{\mathbf{x}}_{i{\mathrm{,}}A}^{\text{T}}{\Cambriabfont\text{β}}_A^*} \right)} } \right| > {{{\lambda _n}} \mathord{\left/ {\vphantom {{{\lambda _n}} 2}} \right. } 2}} \right\} \to 0{\rm{,}}{\text{ }}n \to \infty . $()

    View in Article

    $ {s_j}\left( { \hat {\Cambriabfont\text{β}}} \right) = 0{\text{, }}\left| {{{\hat \beta }_j}} \right| \geq \left( {a + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}} \right){\lambda _n}{\text{, }}j \in A{\rm{;}} $()

    View in Article

    $ \left| {{s_j}\left( { \hat {\Cambriabfont\text{β}}} \right)} \right| \leq {\lambda _n}{\text{, }}\left| {{{\hat \beta }_j}} \right| = 0{\text{, }}j \in {A^c}{\rm{.}} $()

    View in Article

    $ {Q_n}\left( {\Cambriabfont\text{β}} \right) = {L_n}\left( {\Cambriabfont\text{β}} \right) + \sum\limits_{j = 1}^p {{P_{{\lambda _n}}}\left( {\left| {{\beta _j}} \right|} \right)} {\rm{.}} $()

    View in Article

    $ \rm{Pr} \left\{ { \hat {\Cambriabfont\text{β}} \in {B_n}\left( {{\lambda _n}} \right)} \right\} \to 1{\text{, }}n \to \infty $()

    View in Article

    $ \rm{Pr}\left(y=-1\right)=\mathrm{exp}\left(z\right)\mathord{\left/\vphantom{e^z\left(1+e^z\right)}\right.}\left(1+\mathrm{exp}\left(z\right)\right) $()

    View in Article

    $ \rm{Pr}\left(y=1\right)=1\mathord{\left/\vphantom{1\left(1+e^z\right)}\right.}\left(1+\mathrm{exp}\left(z\right)\right)\rm{.} $()

    View in Article

    Peng Wang, Ji Guo, Lin-Feng Li. Machine learning model based on non-convex penalized huberized-SVM[J]. Journal of Electronic Science and Technology, 2024, 22(1): 100246
    Download Citation