• Frontiers of Optoelectronics
  • Vol. 10, Issue 1, 38 (2017)
Suling LI1、2、*
Author Affiliations
  • 1Institute of Electromechanical Engineering, Nanning University, Nanning 530200, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-016-0658-4 Cite this Article
    Suling LI. Double-folding paper-based generator for mechanical energy harvesting[J]. Frontiers of Optoelectronics, 2017, 10(1): 38 Copy Citation Text show less
    References

    [1] Gates B D. Flexible electronics. Science, 2009, 323(5921): 1566– 1567.

    [2] Tachakra S, Wang X H, Istepanian R S H, Song Y H. Mobile ehealth: the unwired evolution of telemedicine. Telemedicine Journal and e-Health, 2003, 9(3): 247–257.

    [3] Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246.

    [4] Zhong J, Zhang Y, Zhong Q, Hu Q, Hu B,Wang Z L, Zhou J. Fiberbased generator for wearable electronics and mobile medication. ACS Nano, 2014, 8(6): 6273–6280.

    [5] Tanskanen P. Management and recycling of electronic waste. Acta Materialia, 2013, 61(3): 1001–1011.

    [6] Tobj rk D, sterbacka R. Paper electronics. Advanced Materials, 2011, 23(17): 1935–1961.

    [7] Russo A, Ahn B Y, Adams J J, Duoss E B, Bernhard J T, Lewis J A. Pen-on-paper flexible electronics. Advanced Materials, 2011, 23 (30): 3426–3430.

    [8] Koren K, Kühl M. A simple laminated paper-based sensor for temperature sensing and imaging. Sensors and Actuators B: Chemical, 2015, 210: 124–128.

    [9] Zhong Q, Zhong J, Cheng X, Yao X, Wang B, Li W, Wu N, Liu K, Hu B, Zhou J. Paper-based active tactile sensor array. Advanced Materials, 2015, 27(44): 7130–7136.

    [10] Liu X, Brien M, Mwangi M, Li X, Whitesides G. Paper-based piezoresistive MEMS force sensors. IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2011, 41(6): 133– 136.

    [11] Fujisaki Y, Koga H, Nakajima Y, Nakata M, Tsuji H, Yamamoto T, Kurita T, Nogi M, Shimidzu N. Transparent nanopaper-based flexible organic thin-film transistor array. Advanced Functional Materials, 2014, 24(12): 1657–1663.

    [12] Peng B, Ren X C,Wang Z,Wang X, Roberts R C, Chan P K L. High performance organic transistor active-matrix driver developed on paper substrate. Scientific Reports, 2014, 4: 6430.

    [13] Lee H, Choi S. An origami paper-based bacteria-powered battery. Nano Energy, 2015, 15: 549–557.

    [14] Cheng Q, Song Z, Ma T, Smith B B, Tang R, Yu H, Jiang H, Chan C K. Folding paper-based lithium-ion batteries for higher areal energy densities. Nano Letters, 2013, 13(10): 4969–4974.

    [15] Yuan L, Xiao X, Ding T, Zhong J, Zhang X, Shen Y, Hu B, Huang Y, Zhou J, Wang Z L. Paper-based supercapacitors for self-powered nanosystems. Angewandte Chemie, 2012, 51(20): 4934–4938.

    [16] Yao B, Yuan L, Xiao X, Zhang J, Qi Y, Zhou J, Zhou J, Hu B, Chen W. Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes.Nano Energy, 2013, 2(6): 1071–1078.

    [17] Hu S, Rajamani R, Yu X. Flexible solid-state paper based carbon nanotube supercapacitor. Applied Physics Letters, 2012, 100(10): 104103-1–104103-4.

    [18] Wang B, Kerr L L. Dye sensitized solar cells on paper substrates. Solar Energy Materials and Solar Cells, 2011, 95(8): 2531–2535.

    [19] Wu N, Cheng X, Zhong Q, Zhong J, Li W, Wang B, Hu B, Zhou J. Cellular polypropylene piezoelectret for human body energy harvesting and health monitoring. Advanced Functional Materials, 2015, 25(30): 4788–4794.

    [20] Wang B, Zhong J, Zhong Q, Wu N, Cheng X, Li W, Liu K, Huang L, Hu B, Zhou J. Sandwiched composite fluorocarbon film for flexible electret generator. Advanced Electronic Materials, 2016, 2 (4): 1500408-1–1500408-6.

    [21] Lemaire E, Moser R, Borsa C J, Shea H, Briand D. Paper-based piezoelectric material for sensors and actuators. Procedia Engineering, 2015, 120: 360–363.

    [22] Kim K, Lee K Y, Seo J, Kumar B, Kim S. Paper-based piezoelectric nanogenerators with high thermal stability. Small, 2011, 7(18): 2577–2580.

    [23] Yang P, Lin Z, Pradel K C, Lin L, Li X, Wen X, He J, Wang Z L. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano, 2015, 9(1): 901–907.

    [24] Wu C, Wang X, Lin L, Guo H, Wang Z L. Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano, 2016, 10(4): 4652–4659.

    [25] Zhong Q, Zhong J, Hu B, Hu Q, Zhou J, Wang Z. A paper-based nanogenerator as a power source and active sensor. Energy & Environmental Science, 2013, 6(6): 1779–1784.

    [26] Zhong J, Zhu H, Zhong Q, Dai J, Li W, Jang S H, Yao Y, Henderson D, Hu Q, Hu L, Zhou J. Self-powered human-interactive transparent nanopaper systems. ACS Nano, 2015, 9(7): 7399–7406.

    [27] Li S, Zhong Q, Zhong J, Cheng X, Wang B, Hu B, Zhou J. Clothbased power shirt for wearable energy harvesting and clothes ornamentation. ACS Applied Materials & Interfaces, 2015, 7(27): 14912–14916.

    [28] Li W, Wu N, Zhong J, Zhong Q, Zhao S, Wang B, Cheng X, Li S, Liu K, Hu B, Zhou J. Theoretical study of cellular piezoelectret generators. Advanced Functional Materials, 2016, 26(12): 1964– 1974.

    [29] Hu Q, Wang B, Zhong Q, Zhong J, Hu B, Zhang X, Zhou J. Metalfree and non-fluorine paper-based generator. Nano Energy, 2015, 14: 236–244

    Suling LI. Double-folding paper-based generator for mechanical energy harvesting[J]. Frontiers of Optoelectronics, 2017, 10(1): 38
    Download Citation