• Photonics Research
  • Vol. 12, Issue 3, 391 (2024)
Fan Cheng1, Vladimir Shuvayev2, Mark Douvidzon3, Lev Deych4, and Tal Carmon1、*
Author Affiliations
  • 1School of Electrical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
  • 2Physics Department, Queens College of CUNY, Flushing, Queens, New York 11367, USA
  • 3Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
  • 4The Graduate Center of CUNY, New York, New York 10016, USA
  • show less
    DOI: 10.1364/PRJ.505164 Cite this Article Set citation alerts
    Fan Cheng, Vladimir Shuvayev, Mark Douvidzon, Lev Deych, Tal Carmon. Cavity continuum[J]. Photonics Research, 2024, 12(3): 391 Copy Citation Text show less
    References

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] A. B. Matsko, V. S. Ilchenko. Optical resonators with whispering-gallery modes - Part I: basics. IEEE J. Sel. Top. Quantum Electron., 12, 3-14(2006).

    [3] M. Cai, O. Painter, K. J. Vahala. Fiber-coupled microsphere laser. Opt. Lett., 25, 1430-1432(2000).

    [4] L. Yang, K. J. Vahala. Gain functionalization of silica microresonators. Opt. Lett., 28, 592-594(2003).

    [5] T. Carmon, T. Kippenberg, L. Yang. Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators. Opt. Express, 13, 3558-3566(2005).

    [6] I. S. Grudinin, A. B. Matsko, L. Maleki. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett., 102, 043902(2009).

    [7] M. Tomes, T. Carmon. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett., 102, 113601(2009).

    [8] A. Jonáš, M. Aas, Y. Karadag. In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities. Lab. Chip, 14, 3093-3100(2014).

    [9] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [10] T. Carmon, K. J. Vahala. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys., 3, 430-435(2007).

    [11] T. Carmon, H. Rokhsari, L. Yang. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett., 94, 223902(2005).

    [12] S. Maayani, L. L. Martin, S. Kaminski. Cavity optocapillaries. Optica, 3, 552-555(2016).

    [13] B. Peng, S. K. Özdemir, F. Lei. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [14] S. Kreps, V. Shuvayev, M. Douvidzon. Coupled spherical-cavities. AIP Adv., 12, 125022(2022).

    [15] A. Francois, M. Himmelhaus. Optical biosensor based on whispering gallery mode excitations in clusters of microparticles. Appl. Phys. Lett., 92, 141107(2008).

    [16] V. N. Astratov, S. P. Ashili. Percolation of light through whispering gallery modes in 3D lattices of coupled microspheres. Opt. Express, 15, 17351-17361(2007).

    [17] Y. Hara, T. Mukaiyama, K. Takeda. Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres. Phys. Rev. Lett., 94, 203905(2005).

    [18] Y. Li, F. Abolmaali, K. W. Allen. Whispering gallery mode hybridization in photonic molecules. Laser Photon. Rev., 11, 1600278(2017).

    [19] J. Kher-Alden, S. Maayani, L. L. Martin. Microspheres with atomic-scale tolerances generate hyperdegeneracy. Phys. Rev. X, 10, 031049(2020).

    [20] D. K. Armani, T. J. Kippenberg, S. M. Spillane. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [21] H.-T. Kim, M. Yu. Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express, 24, 9501-9510(2016).

    [22] B. Li, C. P. Ho, C. Lee. Tunable Autler–Townes splitting observation in coupled whispering gallery mode resonators. IEEE Photon. J., 8, 4501910(2016).

    [23] T. Siegle, S. Schierle, S. Kraemmer. Photonic molecules with a tunable inter-cavity gap. Light Sci. Appl., 6, e16224(2017).

    [24] B. Peng, Ş. K. Özdemir, S. Rotter. Loss-induced suppression and revival of lasing. Science, 346, 328-332(2014).

    [25] M. Brandstetter, M. Liertzer, C. Deutsch. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun., 5, 4034(2014).

    [26] H. Hodaei, M.-A. Miri, M. Heinrich. Parity-time–symmetric microring lasers. Science, 346, 975-978(2014).

    [27] S. T. Chu, B. E. Little, W. Pan. Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters. IEEE Photon. Technol. Lett., 11, 1423-1425(1999).

    [28] V. Shuvayev, S. Kreps, T. Carmon. Whispering gallery modes of a triatomic photonic molecule. AIP Adv., 12, 115027(2022).

    [29] D. S. Wiersma. The physics and applications of random lasers. Nat. Phys., 4, 359-367(2008).

    [30] A. S. Gomes, A. L. Moura, C. B. de Araújo. Recent advances and applications of random lasers and random fiber lasers. Prog. Quantum Electron., 78, 100343(2021).

    [31] T. S. Kao, Y.-H. Hong, K.-B. Hong. Perovskite random lasers: a tunable coherent light source for emerging applications. Nanotechnology, 32, 282001(2021).

    [32] A. N. Azmi, W. Z. W. Ismail, H. A. Hassan. Review of open cavity random lasers as laser-based sensors. ACS Sens., 7, 914-928(2022).

    [33] A. Yariv, A. Scherer, R. K. Lee. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett., 24, 711-713(1999).

    [34] V. N. Astratov, J. P. Franchak, S. P. Ashili. Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder. Appl. Phys. Lett., 85, 5508-5510(2004).

    [35] B. Möller, U. Woggon, M. V. Artemyev. Photons in coupled microsphere resonators. J. Opt. A, 8, S113-S121(2006).

    [36] W. Ahn, X. Zhao, Y. Hong. Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly. Sci. Rep., 6, 22621(2016).

    [37] T. Mitsui, Y. Wakayama, T. Onodera. Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres. Adv. Mater., 22, 3022-3026(2010).

    [38] M. D. Barnes, S. M. Mahurin, A. Mehta. Three-dimensional photonic “molecules” from sequentially attached polymer-blend microparticles. Phys. Rev. Lett., 88, 015508(2001).

    [39] T. Mitsui, Y. Wakayama, T. Onodera. Light propagation within colloidal crystal wire fabricated by a dewetting process. Nano Lett., 8, 853-858(2008).

    [40] M. Hossein-Zadeh, K. J. Vahala. Fiber-taper coupling to whispering-gallery modes of a droplet resonator embedded in a liquid medium. Conference on Lasers and Electro-Optics, CWI5(2006).

    [41] A. Giorgini, S. Avino, P. Malara. Fundamental limits in high-Q droplet microresonators. Sci. Rep., 7, 41997(2017).

    [42] Y. Wang, H. Li, L. Zhao. A review of droplet resonators: operation method and application. Opt. Laser Technol., 86, 61-68(2016).

    [43] A. Kiraz, A. Kurt, M. A. Dündar. Simple largely tunable optical microcavity. Appl. Phys. Lett., 89, 081118(2006).

    [44] S. Maayani, T. Carmon. Droplet Raman laser coupled to a standard fiber. Photon. Res., 7, 1188-1192(2019).

    [45] A. Giorgini, S. Avino, P. Malara. Stimulated Brillouin cavity optomechanics in liquid droplets. Phys. Rev. Lett., 120, 073902(2018).

    [46] S. Kaminski, L. L. Martin, S. Maayani. Ripplon laser through stimulated emission mediated by water waves. Nat. Photonics, 10, 758-761(2016).

    [47] L. Shang, Y. Cheng, Y. Zhao. Emerging droplet microfluidics. Chem. Rev., 117, 7964-8040(2017).

    [48] S. Liao, X. Tao, Y. Ju. Multichannel dynamic interfacial printing: an alternative multicomponent droplet generation technique for lab in a drop. ACS Appl. Mater. Interfaces, 9, 43545-43552(2017).

    [49] H.-T. Li, H.-F. Wang, Y. Wang. A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay. Talanta, 217, 120997(2020).

    [50] A. Ghaznavi, Y. Lin, M. Douvidzon. A monolithic 3D printed axisymmetric co-flow single and compound emulsion generator. Micromachines, 13, 188(2022).

    [51] L. I. Deych, O. Roslyak. Photonic band mixing in linear chains of optically coupled microspheres. Phys. Rev. E, 73, 036606(2006).

    [52] L. I. Deych, C. Schmidt, A. Chipouline. Propagation of the fundamental whispering gallery modes in a linear chain of microspheres. Appl. Phys. B, 93, 21-30(2008).

    [53] C.-S. Deng, H. Xu, L. Deych. Effect of size disorder on the optical transport in chains of coupled microspherical resonators. Opt. Express, 19, 6923-6937(2011).

    [54] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko. Direct observation of stopped light in a whispering-gallery-mode microresonator. Phys. Rev. A, 76, 023816(2007).

    [55] T. Carmon, H. G. L. Schwefel, L. Yang. Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities. Phys. Rev. Lett., 100, 103905(2008).

    [56] S. T. Attar, V. Shuvayev, L. Deych. Level-crossing and modal structure in microdroplet resonators. Opt. Express, 24, 13134-13141(2016).

    [57] D. Bar-David, S. Maayani, L. L. Martin. Cavity optofluidics: a μdroplet’s whispering-gallery mode makes a μvortex. Opt. Express, 26, 19115-19122(2018).

    [58] M. L. Douvidzon, S. Maayani, L. L. Martin. Light and capillary waves propagation in water fibers. Sci. Rep., 7, 16633(2017).

    [59] G. Roini, G. Calusi, M. Ferroni. Nonlinear emission in CsPbBr3 decorated metasurfaces. Appl. Phys. Lett., 122, 241101(2023).

    [60] T. Carmon, S. Y. T. Wang, E. P. Ostby. Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850 nm span. Opt. Express, 15, 7677-7681(2007).

    [61] Y. Ren, R. Zhang, C. Ti. Tapered optical fiber loops and helices for integrated photonic device characterization and microfluidic roller coasters. Optica, 3, 1205-1208(2016).

    [62] Z. Chen, A. Taflove, V. Backman. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express, 12, 1214-1220(2004).

    [63] A. V. Itagi, W. A. Challener. Optics of photonic nanojets. J. Opt. Soc. Am. A, 22, 2847-2858(2005).

    [64] S. Lecler, Y. Takakura, P. Meyrueis. Properties of a three-dimensional photonic jet. Opt. Lett., 30, 2641-2643(2005).

    [65] S. Yang, V. N. Astratov. Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08dB per sphere. Appl. Phys. Lett., 92, 261111(2008).

    [66] Z. Chen, A. Taflove, V. Backman. Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres. Opt. Lett., 31, 389-391(2006).

    [67] A. M. Kapitonov, V. N. Astratov. Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities. Opt. Lett., 32, 409-411(2007).

    [68] K. W. Allen, A. Darafsheh, F. Abolmaali. Microsphere-chain waveguides: focusing and transport properties. Appl. Phys. Lett., 105, 021112(2014).

    [69] A. V. Kanaev, V. N. Astratov, W. Cai. Optical coupling at a distance between detuned spherical cavities. Appl. Phys. Lett., 88, 111111(2006).

    [70] J. Fröhlich, T. Spencer. A rigorous approach to Anderson localization. Phys. Rep., 103, 9-25(1984).

    [71] M. Tomes, K. J. Vahala, T. Carmon. Direct imaging of tunneling from a potential well. Opt. Express, 17, 19160-19165(2009).

    Fan Cheng, Vladimir Shuvayev, Mark Douvidzon, Lev Deych, Tal Carmon. Cavity continuum[J]. Photonics Research, 2024, 12(3): 391
    Download Citation