• Photonics Insights
  • Vol. 4, Issue 2, R03 (2025)
Xiyuan Luo1,†, Sen Wang1, Jinpeng Liu1,2, Xue Dong1..., Piao He1, Qingyu Yang1, Xi Chen1, Feiyan Zhou1, Tong Zhang1, Shijie Feng2, Pingli Han1,3, Zhiming Zhou1, Meng Xiang1,3, Jiaming Qian2, Haigang Ma2, Shun Zhou2, Linpeng Lu2, Chao Zuo2,*, Zihan Geng4,*, Yi Wei5,* and Fei Liu1,3,*|Show fewer author(s)
Author Affiliations
  • 1School of Optoelectronic Engineering, Xidian University, Xi’an, China
  • 2School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
  • 3Xi’an Key Laboratory of Computational Imaging, Xi’an, China
  • 4Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
  • 5Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA
  • show less
    DOI: 10.3788/PI.2025.R03 Cite this Article Set citation alerts
    Xiyuan Luo, Sen Wang, Jinpeng Liu, Xue Dong, Piao He, Qingyu Yang, Xi Chen, Feiyan Zhou, Tong Zhang, Shijie Feng, Pingli Han, Zhiming Zhou, Meng Xiang, Jiaming Qian, Haigang Ma, Shun Zhou, Linpeng Lu, Chao Zuo, Zihan Geng, Yi Wei, Fei Liu, "Revolutionizing optical imaging: computational imaging via deep learning," Photon. Insights 4, R03 (2025) Copy Citation Text show less
    References

    [1] G. Barbastathis et al. On the use of deep learning for computational imaging. Optica, 6, 921(2019). https://doi.org/10.1364/OPTICA.6.000921

    [2] J. Liu et al. Future-proof imaging: computational imaging. Adv. Imaging, 1, 012001(2024). https://doi.org/10.3788/AI.2024.20003

    [3] J. Wu et al. Single-shot lensless imaging with Fresnel zone aperture and incoherent illumination. Light Sci. Appl., 9, 53(2020). https://doi.org/10.1038/s41377-020-0289-9

    [4] M. J. Sun et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun., 7, 12010(2016). https://doi.org/10.1038/ncomms12010

    [5] K. Yang et al. Data-driven polarimetric imaging: a review. Opto-Electron. Sci., 3, 230042-1(2024). https://doi.org/10.29026/oes.2024.230042

    [6] L. Huang et al. Spectral imaging with deep learning. Light Sci. Appl., 11, 61(2022). https://doi.org/10.1038/s41377-022-00743-6

    [7] H. Zhang et al. Image fusion meets deep learning: a survey and perspective. Inform. Fusion, 76, 323(2021). https://doi.org/10.1016/j.inffus.2021.06.008

    [8] N. Li et al. Research on attention-driven unsupervised underwater image enhancement, 1536(2023).

    [9] J. N. Tinsley et al. Direct detection of a single photon by humans. Nat. Commun., 7, 12172(2016). https://doi.org/10.1038/ncomms12172

    [10] N. Wagner et al. Deep learning-enhanced light-field imaging with continuous validation. Nat. Methods, 18, 557(2021). https://doi.org/10.1038/s41592-021-01136-0

    [11] A. V. Babu et al. Deep learning at the edge enables real-time streaming ptychographic imaging(2022).

    [12] F. Liu et al. Development of underwater polarization imaging technology. Laser Optoelectron. Prog., 58, 0600001(2021). https://doi.org/10.3788/LOP202158.0600001

    [13] F. Liu et al. Design of monocentric wide field-of-view and high-resolution computational imaging system(2019). https://doi.org/10.7498/aps.68.20182229

    [14] W. X. Zhang et al. Three-dimensional measurement system based on full-field heterodyne interferometry. Opt. Prec. Eng., 27, 2097(2019).

    [15] Y. Liu et al. Research on snapshot infrared computational spectral imaging technology, 11563, 158(2020).

    [16] H. Zhang et al. Noise suppression for ballistic-photons based on compressive in-line holographic imaging through an inhomogeneous medium. Opt. Express, 28, 10337(2020). https://doi.org/10.1364/OE.385992

    [17] X. Wang et al. Image reconstruction for the computed-tomography imaging interferometer. Acta Opt. Sin., 27, 1600(2007). http://10.1016/S1001-6058(07)60030-4

    [18] J. Zhang et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning. Opt. Lett., 43, 3714(2018). https://doi.org/10.1364/OL.43.003714

    [19] S. Li et al. Imaging through glass diffusers using densely connected convolutional networks. Optica, 5, 803(2018). https://doi.org/10.1364/OPTICA.5.000803

    [20] Y. Z. Li et al. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181(2018). https://doi.org/10.1364/OPTICA.5.001181

    [21] M. Lyu et al. Learning-based lensless imaging through optically thick scattering media. Adv. Photonics, 1, 036002(2019). https://doi.org/10.1117/1.AP.1.3.036002

    [22] M. Lyu et al. Deep-learning-based ghost imaging. Sci. Rep., 7, 17865(2017). https://doi.org/10.1038/s41598-017-18171-7

    [23] Y. C. He et al. Ghost imaging based on deep learning. Sci. Rep., 8, 6469(2018). https://doi.org/10.1038/s41598-018-24731-2

    [24] F. Wang et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging. Opt. Express, 27, 25560(2019). https://doi.org/10.1364/OE.27.025560

    [25] Y. Rivenson et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018). https://doi.org/10.1038/lsa.2017.141

    [26] Z. B. Ren et al. “Learning-based nonparametric autofocusing for digital holography. Optica, 5, 337(2018). https://doi.org/10.1364/OPTICA.5.000337

    [27] H. Wang et al. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Express, 26, 22603(2018). https://doi.org/10.1364/OE.26.022603

    [28] H. D. Wang et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods, 16, 103(2019). https://doi.org/10.1038/s41592-018-0239-0

    [29] E. Nehme et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, 5, 458(2018). https://doi.org/10.1364/OPTICA.5.000458

    [30] W. Ouyang et al. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol., 36, 460(2018). https://doi.org/10.1038/nbt.4106

    [31] T. Nguyen et al. Deep learning approach for Fourier ptychography microscopy. Opt. Express, 26, 26470(2018). https://doi.org/10.1364/OE.26.026470

    [32] J. Z. Zhang et al. Fourier ptychographic microscopy reconstruction with multiscale deep residual network. Opt. Express, 27, 8612(2019). https://doi.org/10.1364/OE.27.008612

    [33] S. J. Feng et al. Micro deep learning profilometry for high-speed 3D surface imaging. Opt. Laser. Eng., 121, 416(2019). https://doi.org/10.1016/j.optlaseng.2019.04.020

    [34] W. Luo et al. Efficient deep learning for stereo matching, 5695(2016).

    [35] Y. Kuznietsov et al. Semi-supervised deep learning for monocular depth map prediction, 2215(2017).

    [36] J. Osborn et al. Open-loop tomography with artificial neural networks on CANARY: on-sky results. Mon. Not. R. Astron. Soc., 441, 2508(2014). https://doi.org/10.1093/mnras/stu758

    [37] Z. Li et al. BP artificial neural network based wavefront correction for sensor-less free space optics communication. Opt. Commun., 385, 219(2017). https://doi.org/10.1016/j.optcom.2016.10.037

    [38] Z. Li et al. Centroid computation for Shack-Hartmann wavefront sensor in extreme situations based on artificial neural networks. Opt. Express, 26, 31675(2018). https://doi.org/10.1364/OE.26.031675

    [39] R. Swanson et al. Wavefront reconstruction and prediction with convolutional neural networks, 481(2018).

    [40] T. B. DuBose et al. Deep learning for turbulence-tolerant wavefront reconstruction of Shack-Hartmann wavefront sensors, JW4G.6(2020).

    [41] S. W. Paine et al. Machine learning for improved image-based wavefront sensing. Opt. Lett., 43, 1235(2018). https://doi.org/10.1364/OL.43.001235

    [42] G. Ju et al. Feature-based phase retrieval wavefront sensing approach using machine learning. Opt. Express, 26, 31767(2018). https://doi.org/10.1364/OE.26.031767

    [43] L. Hu et al. Deep learning assisted Shack–Hartmann wavefront sensor for direct wavefront detection. Opt. Lett., 45, 3741(2020). https://doi.org/10.1364/OL.395579

    [44] L. Hu et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection. Opt. Express, 27, 33504(2019). https://doi.org/10.1364/OE.27.033504

    [45] Q. Xin et al. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning. Opt. Express, 27, 26102(2019). https://doi.org/10.1364/OE.27.026102

    [46] Y. Nishizaki et al. Deep learning wavefront sensing. Opt. Express, 27, 240(2019). https://doi.org/10.1364/OE.27.000240

    [47] H. Guo et al. Improved machine learning approach for wavefront sensing. Sensors, 19, 3533(2019). https://doi.org/10.3390/s19163533

    [48] Y. Wu et al. Sub-millisecond phase retrieval for phase-diversity wavefront sensor. Sensors, 20, 4877(2020). https://doi.org/10.3390/s20174877

    [49] Z. Xu et al. Wavefront reconstruction of a Shack–Hartmann sensor with insufficient lenslets based on an extreme learning machine. Appl. Opt., 59, 4768(2020). https://doi.org/10.1364/AO.388463

    [50] T. Yang et al. Automated design of freeform imaging systems. Light Sci. Appl., 6, e17081(2017). https://doi.org/10.1038/lsa.2017.81

    [51] T. Yang et al. Direct generation of starting points for freeform off-axis three-mirror imaging system design using neural network based deep-learning. Opt. Express, 27, 17228(2019). https://doi.org/10.1364/OE.27.017228

    [52] R. S. Hegde. Accelerating optics design optimizations with deep learning. Opt. Eng., 58, 1(2019). https://doi.org/10.1117/1.OE.58.6.065103

    [53] G. Côté et al. Extrapolating from lens design databases using deep learning. Opt. Express, 27, 28279(2019). https://doi.org/10.1364/OE.27.028279

    [54] G. Côté et al. Deep learning-enabled framework for automatic lens design starting point generation. Opt. Express, 29, 3841(2021). https://doi.org/10.1364/OE.401590

    [55] G. Côté et al. Inferring the solution space of microscope objective lenses using deep learning. Opt. Express, 30, 6531(2022). https://doi.org/10.1364/OE.451327

    [56] C. Fan et al. RETRACTED: Using deep learning to automatically generate design starting points for free-form imaging optical systems. Appl. Opt., 61, 6241(2022). https://doi.org/10.1364/AO.460977

    [57] C. Gannon et al. Using machine learning to create high-efficiency freeform illumination design tools(2018).

    [58] W. Chen et al. Generating starting points for designing freeform imaging optical systems based on deep learning. Opt. Express, 29, 27845(2021). https://doi.org/10.1364/OE.432745

    [59] Y. Nie et al. Freeform optical system design with differentiable three-dimensional ray tracing and unsupervised learning. Opt. Express, 31, 7450(2023). https://doi.org/10.1364/OE.484531

    [60] Y. Peng et al. Learned large field-of-view imaging with thin-plate optics. ACM Trans. Graph., 38, 1(2019). https://doi.org/10.1145/3355089.3356526

    [61] X. Wu et al. RRG-GAN restoring network for simple lens imaging system. Sensors, 21, 3317(2021). https://doi.org/10.3390/s21103317

    [62] S. Wei et al. Low-cost and simple optical system based on wavefront coding and deep learning. Appl. Opt., 62, 6171(2023). https://doi.org/10.1364/AO.494397

    [63] Z. Xu et al. Deep learning control model for adaptive optics systems. Appl. Opt., 58, 1998(2019). https://doi.org/10.1364/AO.58.001998

    [64] A. Nikonorov et al. Deep learning-based imaging using single-lens and multi-aperture diffractive optical systems(2019).

    [65] X. Huang et al. A convolutional neural network based single-frame super-resolution for lensless blood cell counting, 168(2016).

    [66] X. Ma et al. Research on single-frame super-resolution reconstruction algorithm for low resolution cell images based on convolutional neural network, 369(2018).

    [67] C. Dong et al. Accelerating the super-resolution convolutional neural network, 391(2016).

    [68] H. Zhang et al. Super-resolution generative adversarial network (SRGAN) enabled on-chip contact microscopy. J. Phys. D, 54, 394005(2021). https://doi.org/10.1088/1361-6463/ac1138

    [69] Y. Fang et al. Classification of white blood cells by convolution neural network in lens-free imaging system, 1(2018).

    [70] S. Li et al. A deep learning feature fusion algorithm based on Lensless cell detection system, 1(2020).

    [71] M. Baik et al. Label-Free CD34+ cell identification using deep learning and lens-free shadow imaging technology. Biosensors, 13, 993(2023). https://doi.org/10.3390/bios13120993

    [72] R. Vaghashiya et al. Machine learning based lens-free shadow imaging technique for field-portable cytometry. Biosensors, 12, 144(2022). https://doi.org/10.3390/bios12030144

    [73] S. J. Moon et al. Integrating microfluidics and lensless imaging for point-of-care testing. Biosens. Bioelectron., 24, 3208(2009). https://doi.org/10.1016/j.bios.2009.03.037

    [74] Y. Wu et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica, 5, 704(2018). https://doi.org/10.1364/OPTICA.5.000704

    [75] K. Wang et al. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction. Opt. Lett., 44, 4765(2019). https://doi.org/10.1364/OL.44.004765

    [76] K. Wang et al. Y4-Net: a deep learning solution to one-shot dual-wavelength digital holographic reconstruction. Opt. Lett., 45, 4220(2020). https://doi.org/10.1364/OL.395445

    [77] Z. Ren et al. End-to-end deep learning framework for digital holographic reconstruction. Adv. Photonics, 1, 016004(2019). https://doi.org/10.1117/1.AP.1.1.016004

    [78] T. Zeng et al. Redcap: residual encoder-decoder capsule network for holographic image reconstruction. Opt. Express, 28, 4876(2020). https://doi.org/10.1364/OE.383350

    [79] Z. Luo et al. Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks. Opt. Express, 27, 13581(2019). https://doi.org/10.1364/OE.27.013581

    [80] C. Zhang et al. Lens-free imaging method based on generative adversarial networks. Acta Opt. Sin., 40, 1611003(2020). https://doi.org/10.3788/AOS202040.1611003

    [81] L. Chen et al. Image enhancement in lensless inline holographic microscope by inter-modality learning with denoising convolutional neural network. Opt. Commun., 484, 126682(2021). https://doi.org/10.1016/j.optcom.2020.126682

    [82] Z. Göröcs et al. A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples. Light Sci. Appl., 7, 66(2018). https://doi.org/10.1038/s41377-018-0067-0

    [83] Y. Rivenson et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light Sci. Appl., 8, 23(2019). https://doi.org/10.1038/s41377-019-0129-y

    [84] J. D. Rego et al. Robustness lens image reconstruction via PSF estimation, 403(2021).

    [85] K. Monakhova et al. Learned reconstructions for practical mask-based lensless imaging. Opt. Express, 27, 28075(2019). https://doi.org/10.1364/OE.27.028075

    [86] J. Wu et al. Real-time, deep-learning aided lensless microscope. Bio. Opt. Express, 14, 4037(2023). https://doi.org/10.1364/BOE.490199

    [87] M. S. Asif et al. Flatcam: replacing lenses with masks and computation, 663(2015).

    [88] S. S. Khan et al. Flatnet: towards photorealistic scene reconstruction from lensless measurements. IEEE Trans. Pattern Anal. Mach. Intell., 44, 1934(2020). https://doi.org/10.1109/TPAMI.2020.3033882

    [89] H. Zhou et al. Lensless cameras using a mask based on almost perfect sequence through deep learning. Opt. Express, 28, 30248(2020). https://doi.org/10.1364/OE.400486

    [90] K. Tajima et al. Lensless light-field imaging with multi-phased fresnel zone aperture, 1(2017).

    [91] T. Shimano et al. Lensless light-field imaging with Fresnel zone aperture: quasi-coherent coding. Appl. Opt., 57, 2841(2018). https://doi.org/10.1364/AO.57.002841

    [92] J. Wu et al. DNN-FZA camera: a deep learning approach toward broadband FZA lensless imaging. Opt. Lett., 46, 130(2021). https://doi.org/10.1364/OL.411228

    [93] T. Zeng et al. Robust reconstruction with deep learning to handle model mismatch in lensless imaging. IEEE Trans. Comput. Imaging, 7, 1080(2021). https://doi.org/10.1109/TCI.2021.3114542

    [94] X. Pan et al. Image reconstruction with transformer for mask-based lensless imaging. Opt. Lett., 47, 1843(2022). https://doi.org/10.1364/OL.455378

    [95] D. N. Klyshk. A simple method of preparing pure states of an optical field, of implementing the Einstein–Podolsky–Rosen experiment, and of demonstrating the complementarity principle. Soviet Physics Uspekhi, 31, 74(1988). https://doi.org/10.1070/PU1988v031n01ABEH002537

    [96] T. B. Pittman et al. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429(1995). https://doi.org/10.1103/PhysRevA.52.R3429

    [97] M. Aβmann, M. Bayer. Compressive adaptive computational ghost imaging. Sci. Rep., 3, 1545(2013). https://doi.org/10.1038/srep01545

    [98] S. Nakajima et al. Terahertz imaging diagnostics of cancer tissues with a chemometrics technique. Appl. Phy. Lett., 90, 4(2007). https://doi.org/10.1063/1.2433035

    [99] P. Clemente et al. Optical encryption based on computational ghost imaging. Opt. Lett., 35, 2391(2010). https://doi.org/10.1364/OL.35.002391

    [100] B. I. Erkmen. Computational ghost imaging for remote sensing. JOSA A, 29, 782(2012). https://doi.org/10.1364/JOSAA.29.000782

    [101] Y. Mizutani et al. Ghost imaging with deep learning for position map of weakly scattered light source. Nanomanuf. Metrol., 4, 37(2021). https://doi.org/10.1007/s41871-020-00085-0

    [102] C. Zhou et al. Real-time physical compression computational ghost imaging based on array spatial light field modulation and deep learning. Opt. Laser. Eng., 156, 107101(2022). https://doi.org/10.1016/j.optlaseng.2022.107101

    [103] F. Li et al. Compressive ghost imaging through scattering media with deep learning. Opt. Express, 28, 17395(2020). https://doi.org/10.1364/OE.394639

    [104] L. Zhang et al. Research on photon-level ghost imaging restoration based on deep learning. Opt. Commun., 504, 127479(2022). https://doi.org/10.1016/j.optcom.2021.127479

    [105] H. Wu et al. Deep-learning denoising computational ghost imaging. Opt. Laser. Eng., 134, 106183(2020). https://doi.org/10.1016/j.optlaseng.2020.106183

    [106] H. Song et al. 0.8% Nyquist computational ghost imaging via non-experimental deep learning. Opt. Commun., 520, 128450(2022). https://doi.org/10.1016/j.optcom.2022.128450

    [107] Y. Zhu et al. Deep-learning based multi-scale computational ghost imaging for high-performance complex image recovery. Opt. Commun., 554, 129916(2024). https://doi.org/10.1016/j.optcom.2023.129916

    [108] C. Zhao et al. Ghost imaging lidar via sparsity constraints. Appl. Phy. Lett., 101, 14(2012). https://doi.org/10.1063/1.4757874

    [109] D. Li et al. Multi-mode microscopic imaging technique based on single-pixel imaging principle. Acta Opt. Sin., 43, 2111003(2023). https://doi.org/10.3788/AOS231001

    [110] I. Hoshi et al. Single-pixel imaging using a recurrent neural network combined with convolutional layers. Opt. Express, 28, 34069(2020). https://doi.org/10.1364/OE.410191

    [111] R. Shang et al. Deep-learning-driven reliable single-pixel imaging with uncertainty approximation(2021).

    [112] F. Wang et al. Single-pixel imaging using physics enhanced deep learning. Photon. Res., 10, 104(2021). https://doi.org/10.1364/PRJ.440123

    [113] S. Rizvi et al. Improving imaging quality of real-time Fourier single-pixel imaging via deep learning. Sensors, 19, 4190(2019). https://doi.org/10.3390/s19194190

    [114] X. Yang et al. High imaging quality of Fourier single pixel imaging based on generative adversarial networks at low sampling rate. Opt. Laser. Eng., 140, 106533(2021). https://doi.org/10.1016/j.optlaseng.2021.106533

    [115] X. Tian et al. Interpretable Poisson optimization-inspired deep network for single-photon counting image denoising. IEEE Trans. Instrum. Meas., 72, 1(2022). https://doi.org/10.1109/TIM.2022.3228266

    [116] Y. Guan et al. Single photon counting compressive imaging based on a sampling and reconstruction integrated deep network. Opt. Commun., 459, 124923(2020). https://doi.org/10.1016/j.optcom.2019.124923

    [117] W. C. Li et al. Deep-learning-based single-photon-counting compressive imaging via jointly trained subpixel convolution sampling. Appl. Opt., 59, 6828(2020). https://doi.org/10.1364/AO.394410

    [118] W. Gao et al. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning. Opt. Express, 29, 5552(2021). https://doi.org/10.1364/OE.413925

    [119] Q. Zhao et al. Speckle-based optical cryptosystem and its application for human face recognition via deep learning. Adv. Sci., 9, 2202407(2022). https://doi.org/10.1002/advs.202202407

    [120] P. Qi et al. A symmetric forward-inverse reinforcement framework for image reconstruction through scattering media. Opt. Laser Technol., 179, 111222(2024). https://doi.org/10.1016/j.optlastec.2024.111222

    [121] X. Lu et al. Multi-polarization fusion network for ghost imaging through dynamic scattering media. Adv. Imaging, 1, 031001(2024). https://doi.org/10.3788/AI.2024.10014

    [122] M. Lyu et al. Exploit imaging through opaque wall via deep learning(2017).

    [123] Y. LeCun et al. Deep learning. Nature, 521, 436(2015). https://doi.org/10.1038/nature14539

    [124] A. Turpin et al. Light scattering control in transmission and reflection with neural networks. Opt. Express, 26, 30911(2018). https://doi.org/10.1364/OE.26.030911

    [125] Y. Zhang et al. Machine learning based adaptive optics for doughnut-shaped beam. Opt. Express, 27, 16871(2019). https://doi.org/10.1364/OE.27.016871

    [126] S. Cheng et al. Artificial intelligence-assisted light control and computational imaging through scattering media. J. Innov. Opt. Heal. Sci., 12, 1930006(2019). https://doi.org/10.1142/S1793545819300064

    [127] B. Rahmani et al. Multimode optical fiber transmission with a deep learning network. Light Sci. Appl., 7, 69(2018). https://doi.org/10.1038/s41377-018-0074-1

    [128] Z. Yu et al. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields. Innovation, 3, 100292(2022). https://doi.org/10.1016/j.xinn.2022.100292

    [129] Q. Luo et al. Motion-based coherent optical imaging in heavily scattering random media. Opt. Lett., 44, 2716(2019). https://doi.org/10.1364/OL.44.002716

    [130] O. Katz et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784(2014). https://doi.org/10.1038/nphoton.2014.189

    [131] H. Yilmaz et al. Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica, 2, 424(2015). https://doi.org/10.1364/OPTICA.2.000424

    [132] A. Porat et al. Widefield lensless imaging through a fiber bundle via speckle correlations. Opt. Express, 24, 16835(2016). https://doi.org/10.1364/OE.24.016835

    [133] Y. Jin et al. Machine learning guided rapid focusing with sensor-less aberration corrections. Opt. Express, 26, 30162(2018). https://doi.org/10.1364/OE.26.030162

    [134] Y. Jin et al. Wavefront reconstruction based on deep transfer learning for microscopy. Opt. Express, 28, 20738(2020). https://doi.org/10.1364/OE.396321

    [135] Q. Tian et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system. Opt. Express, 27, 10765(2019). https://doi.org/10.1364/OE.27.010765

    [136] A. B. Siddik et al. Deep learning estimation of modified zernike coefficients and recovery of point spread functions in turbulence. Opt. Express, 31, 22903(2023). https://doi.org/10.1364/OE.493229

    [137] T. Ando et al. Speckle-learning-based object recognition through scattering media. Opt. Express, 23, 33902(2015). https://doi.org/10.1364/OE.23.033902

    [138] R. Horisaki et al. Learning-based imaging through scattering media. Opt. Express, 24, 13738(2016). https://doi.org/10.1364/OE.24.013738

    [139] R. Horisaki et al. Learning-based focusing through scattering media. Appl. Opt., 56, 4358(2017). https://doi.org/10.1364/AO.56.004358

    [140] E. Guo et al. Learning-based method to reconstruct complex targets through scattering medium beyond the memory effect. Opt. Express, 28, 2433(2020). https://doi.org/10.1364/OE.383911

    [141] Y. Wang et al. High performance “non-local” generic face reconstruction model using the lightweight Speckle-Transformer (SpT) UNet. Opto-Electron. Adv., 6, 220049-1(2023). https://doi.org/10.29026/oea.2023.220049

    [142] T. Eboli et al. End-to-end interpretable learning of non-blind image deblurring, 314(2020).

    [143] D. Gong et al. Learning deep gradient descent optimization for image deconvolution. IEEE Trans. Neural Networks Learn. Syst., 31, 5468(2020). https://doi.org/10.1109/TNNLS.2020.2968289

    [144] K. Zhang et al. Learning deep CNN denoiser prior for image restoration, 2808(2017).

    [145] J. W. Zhang et al. Learning fully convolutional networks for iterative non-blind deconvolution, 6969(2017).

    [146] W. S. Zhang et al. Denoising prior driven deep neural network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell., 41, 2305(2019). https://doi.org/10.1109/TPAMI.2018.2873610

    [147] Y. Quan et al. Nonblind image deblurring via deep learning in complex field. IEEE Trans. Neural Networks Learn. Syst., 33, 5387(2021). https://doi.org/10.1109/TNNLS.2021.3070596

    [148] L. Chen et al. Learning a non-blind deblurring network for night blurry images, 10542(2021).

    [149] E. Edrei et al. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect. Optica, 3, 71(2016). https://doi.org/10.1364/OPTICA.3.000071

    [150] M. Zhou et al. Deep-learning-based rapid imaging through scattering media beyond the memory effect. IEEE Photonics Technol. Lett., 34, 295(2022). https://doi.org/10.1109/LPT.2022.3153665

    [151] S. Zheng et al. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network. Photon. Res., 9, B220(2021). https://doi.org/10.1364/PRJ.416246

    [152] J. Zhao et al. Deep-learning cell imaging through Anderson localizing optical fiber. Adv. Photonics, 1, 066001(2019). https://doi.org/10.1117/1.AP.1.6.066001

    [153] P. Fan et al. Deep learning the high variability and randomness inside multimode fibers. Opt. Express, 27, 20241(2019). https://doi.org/10.1364/OE.27.020241

    [154] Y. Sun et al. Image reconstruction through dynamic scattering media based on deep learning. Opt. Express, 27, 16032(2019). https://doi.org/10.1364/OE.27.016032

    [155] H. Wu et al. Single shot real-time high resolution imaging through dynamic turbid media based on deep learning. Opt. Laser. Eng., 149, 106819(2022). https://doi.org/10.1016/j.optlaseng.2021.106819

    [156] S. Zhu et al. Imaging through unknown scattering media based on physics-informed learning. Photon. Res., 9, B210(2021). https://doi.org/10.1364/PRJ.416551

    [157] W. Tahir et al. Adaptive 3D descattering with dynamic synthesis network. Light Sci. Appl., 11, 42(2022). https://doi.org/10.1038/s41377-022-00730-x

    [158] M. O’Toole et al. Confocal non-line-of-sight imaging based on the light-cone transform. Nature, 555, 338(2018). https://doi.org/10.1038/nature25489

    [159] X. Liu et al. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature, 572, 620(2019). https://doi.org/10.1038/s41586-019-1461-3

    [160] D. Faccio et al. Non-line-of-sight imaging. Nat. Rev. Phys., 2, 318(2020). https://doi.org/10.1038/s42254-020-0174-8

    [161] C. Pei et al. Dynamic non-line-of-sight imaging system based on the optimization of point spread functions. Opt. Express, 29, 32349(2021). https://doi.org/10.1364/OE.439372

    [162] T. Li et al. Non-line-of-sight fast tracking in a corridor. Opt. Express, 29, 41568(2021). https://doi.org/10.1364/OE.443366

    [163] B. Wang et al. Non-line-of-sight imaging with picosecond temporal resolution. Phy. Rev. Lett., 127, 053602(2021). https://doi.org/10.1103/PhysRevLett.127.053602

    [164] R. Geng et al. Passive non-line-of-sight imaging using optimal transport. IEEE Trans. Image Process., 31, 110(2021). https://doi.org/10.1109/TIP.2021.3128312

    [165] M. Batarseh et al. Passive sensing around the corner using spatial coherence. Nat. Commun., 9, 3629(2018). https://doi.org/10.1038/s41467-018-05985-w

    [166] K. Tanaka et al. Polarized non-line-of-sight imaging, 2136(2020).

    [167] C. Zhou et al. Non-line-of-sight imaging off a Phong surface through deep learning(2020).

    [168] R. Ramesh et al. 5d time-light transport matrix: what can we reason about scene properties?. Acta Leprologica, 94, 91411(2018).

    [169] A. B. Yedidia et al. Using unknown occluders to recover hidden scenes, 12231(2019).

    [170] C. A. Metzler et al. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging. Optica, 7, 63(2020). https://doi.org/10.1364/OPTICA.374026

    [171] W. Chen et al. Learned feature embeddings for non-line-of-sight imaging and recognition. ACM ToG, 39, 1(2020). https://doi.org/10.1145/3414685.3417825

    [172] B. Ahn et al. Convolutional approximations to the general non-line-of-sight imaging operator, 7889(2019).

    [173] X. Liu et al. Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems. Nat. Commun., 11, 1645(2020). https://doi.org/10.1038/s41467-020-15157-4

    [174] J. T. Ye et al. Compressed sensing for active non-line-of-sight imaging. Opt. Express, 29, 1749(2021). https://doi.org/10.1364/OE.413774

    [175] O. Katz et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photon., 8, 784(2014). https://doi.org/10.1038/nphoton.2014.189

    [176] C. Saunders et al. Computational periscopy with an ordinary digital camera. Nature, 565, 472(2019). https://doi.org/10.1038/s41586-018-0868-6

    [177] D. B. Lindell et al. Wave-based non-line-of-sight imaging using fast f-k migration. ACM ToG, 38, 1(2019). https://doi.org/10.1145/3306346.3322937

    [178] C. Wu et al. Non–line-of-sight imaging over 1.43 km. Natl. Acad. Sci., 118, e2024468118(2021). https://doi.org/10.1073/pnas.2024468118

    [179] C. Jin et al. Richardson–Lucy deconvolution of time histograms for high-resolution non-line-of-sight imaging based on a back-projection method. Opt. Lett., 43, 5885(2018). https://doi.org/10.1364/OL.43.005885

    [180] V. Arellano et al. Fast back-projection for non-line of sight reconstruction, 1(2017).

    [181] D. B. Lindell et al. Acoustic non-line-of-sight imaging, 6780(2019).

    [182] J. B. Boger-Lombard et al. Passive optical time-of-flight for non line-of-sight localization. Nat. Commun., 10, 3343(2019). https://doi.org/10.1038/s41467-019-11279-6

    [183] J. Bertolotti et al. Non-invasive imaging through opaque scattering layers. Nature, 491, 232(2012). https://doi.org/10.1038/nature11578

    [184] T. Maeda et al. Thermal non-line-of-sight imaging, 1(2019).

    [185] M. Kaga et al. Thermal non-line-of-sight imaging from specular and diffuse reflections. IPSJ Trans. Comput. Vis. Appl., 11, 1(2019). https://doi.org/10.1186/s41074-019-0060-4

    [186] J. A. Teichman et al. Phasor field waves: a mathematical treatment. Opt. Express, 27, 27500(2019). https://doi.org/10.1364/OE.27.027500

    [187] S. A. Reza et al. Phasor field waves: experimental demonstrations of wave-like properties. Opt. Express, 27, 32587(2019). https://doi.org/10.1364/OE.27.032587

    [188] J. Dove et al. Paraxial theory of phasor-field imaging. Opt. Express, 27, 18016(2019). https://doi.org/10.1364/OE.27.018016

    [189] F. Heide et al. Non-line-of-sight imaging with partial occluders and surface normals. ACM ToG, 38, 1(2019). https://doi.org/10.1145/3269977

    [190] F. Xu et al. Revealing hidden scenes by photon-efficient occlusion-based opportunistic active imaging. Opt. Express, 26, 9945(2018). https://doi.org/10.1364/OE.26.009945

    [191] S. W. Seidel et al. Corner occluder computational periscopy: estimating a hidden scene from a single photograph, 1(2019).

    [192] S. I. Young et al. Non-line-of-sight surface reconstruction using the directional light-cone transform, 1407(2020).

    [193] C. Y. Tsai et al. Beyond volumetric albedo--a surface optimization framework for non-line-of-sight imaging, 1545(2019).

    [194] O. Gupta et al. Reconstruction of hidden 3D shapes using diffuse reflections. Opt. Express, 20, 19096(2012). https://doi.org/10.1364/OE.20.019096

    [195] D. Wu et al. Frequency analysis of transient light transport with applications in bare sensor imaging, 542(2012).

    [196] J. Tasinkevych et al. Circular radon transform inversion technique in synthetic aperture ultrasound imaging: an ultrasound phantom evaluation. Arch. Acoust., 39, 569(2014). https://doi.org/10.2478/aoa-2014-0061

    [197] M. Laurenzis et al. Feature selection and back-projection algorithms for nonline-of-sight laser–gated viewing. J. Electron. Imaging, 23, 063003(2014). https://doi.org/10.1117/1.JEI.23.6.063003

    [198] M. Tancik et al. Data-driven non-line-of-sight imaging with a traditional camera, IW2B.6(2018).

    [199] W. Chen et al. Steady-state non-line-of-sight imaging, 6790(2019).

    [200] P. Caramazza et al. Neural network identification of people hidden from view with a single-pixel, single-photon detector. Sci. Rep., 8, 11945(2018). https://doi.org/10.1038/s41598-018-30390-0

    [201] A. Kirmani et al. Looking around the corner using transient imaging, 159(2009).

    [202] A. Kadambi et al. Occluded imaging with time-of-flight sensors. ACM ToG, 35, 1(2016). https://doi.org/10.1145/2836164

    [203] M. Isogawa et al. Optical non-line-of-sight physics-based 3d human pose estimation, 7013(2020).

    [204] S. Shen et al. Non-line-of-sight imaging via neural transient fields. IEEE Trans. Pattern Anal. Mach. Intell., 43, 2257(2021). https://doi.org/10.1109/TPAMI.2021.3076062

    [205] J. Grau et al. Occlusion fields: an implicit representation for non-line-of-sight surface reconstruction(2022).

    [206] H. Liu et al. PI-NLOS: polarized infrared non-line-of-sight imaging. Opt. Express, 31, 44113(2023). https://doi.org/10.1364/OE.507875

    [207] Y. Cao et al. Dynamic-excitation-based steady-state non-line-of-sight imaging via multi-branch convolutional neural network. Opt. Laser. Eng., 161, 107369(2023). https://doi.org/10.1016/j.optlaseng.2022.107369

    [208] I. Freund et al. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 61, 2328(1988). https://doi.org/10.1103/PhysRevLett.61.2328

    [209] H. Liu et al. Physical picture of the optical memory effect. Photon. Res., 7, 1323(2019). https://doi.org/10.1364/PRJ.7.001323

    [210] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758(1982). https://doi.org/10.1364/AO.21.002758

    [211] Y. C. Shechtman et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process Mag., 32, 87(2015). https://doi.org/10.1109/MSP.2014.2352673

    [212] H. H. Bauschke et al. Hybrid projection–reflection method for phase retrieval. JOSA A, 20, 1025(2003). https://doi.org/10.1364/JOSAA.20.001025

    [213] S. Marchesini et al. Alternating projection, ptychographic imaging and phase synchronization. Appl. Comput. Harmon. A., 41, 815(2016). https://doi.org/10.1016/j.acha.2015.06.005

    [214] S. Zheng et al. Non-line-of-sight imaging under white-light illumination: a two-step deep learning approach. Opt. Express, 29, 40091(2021). https://doi.org/10.1364/OE.443127

    [215] X. He et al. Passive non-line-of-sight imaging reconstruction based on dual input U-Net, 337(2023).

    [216] X. Yu et al. CAGAN: a channel-aware generative adversarial network for passive non-line-of-sight imaging, 508(2023).

    [217] Z. Wang et al. Non-line-of-sight imaging and location determination using deep learning. Opt. Laser. Eng., 169, 107701(2023). https://doi.org/10.1016/j.optlaseng.2023.107701

    [218] C. Wang et al. Passive non-line-of-sight imaging of moving targets using physical embedding and event-based vision(2024).

    [219] S. Wu et al. Physics-constrained deep-inverse point spread function model: toward non-line-of-sight imaging reconstruction. Adv. Photonics Nexus, 3, 026010(2024). https://doi.org/10.1117/1.APN.3.2.026010

    [220] Y. Xu et al. Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access, 4, 165(2015). https://doi.org/10.1109/ACCESS.2015.2511558

    [221] Y. Guo et al. Haze visibility enhancement for promoting traffic situational awareness in vision-enabled intelligent transportation. IEEE Trans. Veh. Technol., 72, 15421(2023). https://doi.org/10.1109/TVT.2023.3298041

    [222] K. Nguyen et al. Analysis of the influence of de-hazing methods on vehicle detection in aerial images. Int. J. Adv. Comput. Sci. Appl., 13, 6(2022). https://doi.org/10.14569/IJACSA.2022.01306100

    [223] J. Liu et al. A review of remote sensing image dehazing. Sensors, 21, 3926(2021). https://doi.org/10.3390/s21113926

    [224] S. Karavarsamis et al. A survey of deep learning-based image restoration methods for enhancing situational awareness at disaster sites: the cases of rain, snow and haze. Sensors, 22, 4707(2022). https://doi.org/10.3390/s22134707

    [225] Y. Song et al. Optical imaging and image restoration techniques for deep ocean mapping: a comprehensive survey. J. Photogramm. Remote Sens. Geoinf. Sci., 90, 243(2022). https://doi.org/10.1007/s41064-022-00206-y

    [226] M. J. Islam et al. Fast underwater image enhancement for improved visual perception. IEEE Rob. Autom. Lett., 5, 3227(2020). https://doi.org/10.1109/LRA.2020.2974710

    [227] Y. Y. Schechner et al. Instant dehazing of images using polarization, 1(2001).

    [228] T. Treibitz et al. Active polarization descattering. IEEE Trans. Pattern Anal. Mach. Intell., 31, 385(2008). https://doi.org/10.1109/TPAMI.2008.85

    [229] Y. Y. Schechner et al. Polarization-based vision through haze. Appl. Opt., 42, 511(2003). https://doi.org/10.1364/AO.42.000511

    [230] C. Lei et al. Shape from polarization for complex scenes in the wild, 12632(2022).

    [231] J. Zhang et al. Learning a convolutional demosaicing network for microgrid polarimeter imagery. Opt. Lett., 43, 4534(2018). https://doi.org/10.1364/OL.43.004534

    [232] Y. Shi et al. Polarization-based haze removal using self-supervised network. Front. Phys-lausanne, 9, 789232(2022). https://doi.org/10.3389/fphy.2021.789232

    [233] Y. Lyu et al. Reflection separation using a pair of unpolarized and polarized images, 32(2019).

    [234] T. Liu et al. Deep learning-based holographic polarization microscopy. ACS Photonics, 7, 3023(2020). https://doi.org/10.1021/acsphotonics.0c01051

    [235] J. Zhang et al. PFNet: an unsupervised deep network for polarization image fusion. Opt. Lett., 45, 1507(2020). https://doi.org/10.1364/OL.384189

    [236] J. Zhang et al. Visible light polarization image desmogging via cycle convolutional neural network. Multimedia Syst., 28, 45(2022). https://doi.org/10.1007/s00530-021-00802-9

    [237] K. Suo et al. Image dehazing combining polarization properties and deep learning. JOSA A, 41, 311(2024). https://doi.org/10.1364/JOSAA.507892

    [238] G. N. Bailey et al. Archaeology of the continental shelf: marine resources, submerged landscapes and underwater archaeology. Quaternary Sci. Rev., 27, 2153(2008). https://doi.org/10.1016/j.quascirev.2008.08.012

    [239] L. B. Wolff. Polarization vision: a new sensory approach to image understanding. Image Vision Comput., 15, 81(1997). https://doi.org/10.1016/S0262-8856(96)01123-7

    [240] L. Shen et al. An iterative image dehazing method with polarization. IEEE Trans. Multimedia, 21, 1093(2018). https://doi.org/10.1109/TMM.2018.2871955

    [241] Y. Y. Schechner et al. Recovery of underwater visibility and structure by polarization analysis. IEEE J. Oceanic Eng., 30, 570(2005). https://doi.org/10.1109/JOE.2005.850871

    [242] X. Li et al. Polarimetric image recovery method combining histogram stretching for underwater imaging. Sci. Rep., 8, 12430(2018). https://doi.org/10.1038/s41598-018-30566-8

    [243] T. Liu et al. Polarimetric underwater image recovery for color image with crosstalk compensation. Opt. Laser. Eng., 124, 105833(2020). https://doi.org/10.1016/j.optlaseng.2019.105833

    [244] J. Guan et al. Target detection in turbid medium using polarization-based range-gated technology. Opt. Express, 21, 14152(2013). https://doi.org/10.1364/OE.21.014152

    [245] J. Liang et al. Method for enhancing visibility of hazy images based on polarimetric imaging. Photon. Res., 2, 38(2014). https://doi.org/10.1364/PRJ.2.000038

    [246] Y. Li et al. Deep learning approach to scalable imaging through scattering media(2019).

    [247] H. Hu et al. Polarimetric underwater image recovery via deep learning. Opt. Laser. Eng., 133, 106152(2020). https://doi.org/10.1016/j.optlaseng.2020.106152

    [248] H. Liu et al. Review of polarimetric image denoising. Adv. Imaging, 1, 022001(2024). https://doi.org/10.3788/AI.2024.20001

    [249] H. Hu et al. IPLNet: a neural network for intensity-polarization imaging in low light. Opt. Lett., 45, 6162(2020). https://doi.org/10.1364/OL.409673

    [250] Y. Xiang et al. Underwater polarization imaging recovery based on polarimetric residual dense network. IEEE Photon. J., 14, 7860206(2022). https://doi.org/10.1109/JPHOT.2022.3221726

    [251] Q. Ren et al. The underwater polarization dehazing imaging with a lightweight convolutional neural network. Optik, 251, 168381(2022). https://doi.org/10.1016/j.ijleo.2021.168381

    [252] J. Gao et al. Mueller transform matrix neural network for underwater polarimetric dehazing imaging. Opt. Express, 31, 27213(2023). https://doi.org/10.1364/OE.496978

    [253] H. Lin et al. Single image deblurring for pulsed laser range-gated imaging system with multi-slice Integration. Photonics, 9, 642(2022). https://doi.org/10.3390/photonics9090642

    [254] Y. Zhang et al. Mask-guided deep learning fishing net detection and recognition based on underwater range gated laser imaging. Opt. Laser Technol., 171, 110402(2024). https://doi.org/10.1016/j.optlastec.2023.110402

    [255] T. Gruber et al. Gated2depth: Real-time dense lidar from gated images, 1506(2019).

    [256] X. Liu et al. Vision-guided three-dimensional range-gated imaging based on epistemic uncertainty estimation. Opt. Eng., 62, 123105(2023). https://doi.org/10.1117/1.OE.62.12.123105

    [257] C. Xia et al. Range-intensity-profile-guided gated light ranging and imaging based on a convolutional neural network. Sensors, 24, 2151(2024). https://doi.org/10.3390/s24072151

    [258] C. Yang et al. Accelerated photoacoustic tomography reconstruction via recurrent inference machines, 6371(2019).

    [259] P. Beard. Biomedical photoacoustic imaging. Interface Focus, 1, 602(2011). https://doi.org/10.1098/rsfs.2011.0028

    [260] X. Wei et al. Deep Learning-powered biomedical photoacoustic imaging. Neurocomputing, 573, 127207(2023). https://doi.org/10.1016/j.neucom.2023.127207

    [261] S. Gutta et al. Deep neural network-based bandwidth enhancement of photoacoustic data. J. Biomed. Opt., 22, 116001(2017). https://doi.org/10.1117/1.JBO.22.11.116001

    [262] S. Antholzer et al. Deep learning for photoacoustic tomography from sparse data. Inverse Probl. Sci. Eng., 27, 987(2019). https://doi.org/10.1080/17415977.2018.1518444

    [263] A. Hariri et al. Development of low-cost photoacoustic imaging systems using very low-energy pulsed laser diodes. J. Biomed. Opt., 22, 075001(2017). https://doi.org/10.1117/1.JBO.22.7.075001

    [264] S. Antholzer et al. Photoacoustic image reconstruction via deep learning, 10494, 433.

    [265] R. Manwar et al. Overview of ultrasound detection technologies for photoacoustic imaging. Micromachines, 11, 692(2020). https://doi.org/10.3390/mi11070692

    [266] H. Ma et al. Quantitative and anatomical imaging of dermal angiopathy by noninvasive photoacoustic microscopic biopsy. Bio. Opt. Express, 12, 6300(2021). https://doi.org/10.1364/BOE.439625

    [267] H. Ma et al. Multiscale confocal photoacoustic dermoscopy to evaluate skin health. Quant. Imag. Med. Surg., 12, 2696(2022). https://doi.org/10.21037/qims-21-878

    [268] H. Ma et al. Three dimensional confocal photoacoustic dermoscopy with an autofocusing sono-opto probe. J. Biophoton., 15, e202100323(2022). https://doi.org/10.1002/jbio.202100323

    [269] H. Ma et al. Monitoring of microvascular calcification by time-resolved photoacoustic microscopy. Photoacoustic, 41, 100664(2025). https://doi.org/10.1016/j.pacs.2024.100664

    [270] T. Feng et al. Adaptively spatial PSF removal enables contrast enhancement for multi-layer(2024).

    [271] Y. Gao et al. 4D spectral-spatial computational photoacoustic dermoscopy. Photoacoustic, 34, 100572(2023). https://doi.org/10.1016/j.pacs.2023.100572

    [272] Z. Guan et al. Ptychonet: Fast and High Quality Phase Retrieval for Ptychography(2019).

    [273] X. Pan et al. An efficient ptychography reconstruction strategy through fine-tuning of large pre-trained deep learning model. iScience, 26, 12(2023). https://doi.org/10.1016/j.isci.2023.108420

    [274] W. Lv et al. Resolution-enhanced ptychography framework with an equivalent upsampling and precise position. Appl. Opt., 61, 2903(2022). https://doi.org/10.1364/AO.451431

    [275] W. Gan et al. PtychoDV: vision transformer-based deep unrolling network for ptychographic image reconstruction. IEEE Open J. Signal Process., 5, 539(2024). https://doi.org/10.1109/OJSP.2024.3375276

    [276] M. J. Cherukara et al. AI-enabled high-resolution scanning coherent diffraction imaging. Appl. Phy. Lett., 117, 4(2020). https://doi.org/10.1063/5.0013065

    [277] V. Bianco et al. Deep learning-based, misalignment resilient, real-time Fourier Ptychographic Microscopy reconstruction of biological tissue slides. IEEE J. Sel. Top. Quantum Electron., 28, 6800110(2022). https://doi.org/10.1109/JSTQE.2022.3154236

    [278] Q. Chen et al. Fourier ptychographic microscopy with untrained deep neural network priors. Opt. Express, 30, 39597(2022). https://doi.org/10.1364/OE.472171

    [279] D. Yang et al. Fourier ptychography multi-parameter neural network with composite physical priori optimization. Bio. Opt. Express, 13, 2739(2022). https://doi.org/10.1364/BOE.456380

    [280] M. Sun et al. Neural network model combined with pupil recovery for Fourier ptychographic microscopy. Opt. Express, 27, 24161(2019). https://doi.org/10.1364/OE.27.024161

    [281] L. Bouchama et al. Fourier ptychographic microscopy image enhancement with bi-modal deep learning. Bio. Opt. Express, 14, 3172(2023). https://doi.org/10.1364/BOE.489776

    [282] R. Wang et al. Virtual brightfield and fluorescence staining for Fourier ptychography via unsupervised deep learning. Opt. Lett., 45, 5405(2020). https://doi.org/10.1364/OL.400244

    [283] F. Shamshad et al. Subsampled Fourier ptychography via pretrained invertible and untrained network priors(2019).

    [284] V. Bianco et al. Deep learning assisted Fourier ptychography for cells and tissue analysis, 12622, 65(2023).

    [285] J. Sha et al. Improving the resolution of Fourier ptychographic imaging using an a priori neural network. Opt. Lett., 48, 6316(2023). https://doi.org/10.1364/OL.508134

    [286] T. Li et al. Coordinate-based neural network for Fourier phase retrieval, 2585(2024).

    [287] L. Boominathan et al. Phase retrieval for Fourier ptychography under varying amount of measurements(2018).

    [288] F. Ströhl et al. Object detection neural network improves Fourier ptychography reconstruction. Opt. Express, 28, 37199(2020). https://doi.org/10.1364/OE.409679

    [289] L. Bouchama et al. A physics-inspired deep learning framework for an efficient Fourier ptychographic microscopy reconstruction under low overlap conditions. Sensors, 23, 6829(2023). https://doi.org/10.3390/s23156829

    [290] Y. F. Cheng et al. Illumination pattern design with deep learning for single-shot Fourier ptychographic microscopy. Opt. Express, 27, 644(2019). https://doi.org/10.1364/OE.27.000644

    [291] H. Zhou et al. Fourier ptychographic microscopy image stack reconstruction using implicit neural representations. Optica, 10, 1679(2023). https://doi.org/10.1364/OPTICA.505283

    [292] S. Jiang et al. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow. Bio. Opt. Express, 9, 3306(2018). https://doi.org/10.1364/BOE.9.003306

    [293] P. Bohra et al. Dynamic Fourier ptychography with deep spatiotemporal priors. Inverse Probl., 39, 064005(2023). https://doi.org/10.1088/1361-6420/acca72

    [294] S. Gupta et al. Perceptually driven conditional GAN for Fourier ptychography, 1267(2019).

    [295] S. Li et al. Synthetic apertures for array ptychography imaging via deep learning, 12138, 41(2022).

    [296] W. Chen. Fourier ptychography based on a u-net convolutional neural network, 130(2023).

    [297] H. Wu et al. Super-resolution microscopy reveals new insights into organelle interactions. Adv. Imaging, 1, 032001(2024). https://doi.org/10.3788/AI.2024.20004

    [298] F. Zhao et al. Deep-learning super-resolution light-sheet add-on microscopy (Deep-SLAM) for easy isotropic volumetric imaging of large biological specimens. Bio. Opt. Express, 11, 7273(2020). https://doi.org/10.1364/BOE.409732

    [299] J. Li et al. Spatial and temporal super-resolution for fluorescence microscopy by a recurrent neural network. Opt. Express, 29, 15747(2021). https://doi.org/10.1364/OE.423892

    [300] B. Yao et al. Image reconstruction with a deep convolutional neural network in high-density super-resolution microscopy. Opt. Express, 28, 15432(2020). https://doi.org/10.1364/OE.392358

    [301] S. W. Hell et al. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780(1994). https://doi.org/10.1364/OL.19.000780

    [302] M. Li et al. Deep adversarial network for super stimulated emission depletion imaging. J. Nanophoton., 14, 016009(2020). http://10.1117/1.JNP.14.016009

    [303] Y. I. Chen et al. Spatial resolution enhancement in photon-starved STED imaging using deep learning-based fluorescence lifetime analysis. Nanoscale, 15, 9449(2023). https://doi.org/10.1039/D3NR00305A

    [304] V. Ebrahimi et al. Deep learning enables fast, gentle STED microscopy. Commun. Biol., 6, 674(2023). https://doi.org/10.1038/s42003-023-05054-z

    [305] J. W. Goodman. Introduction to Fourier Optics(1996).

    [306] U. Schanars et al. Digital holography and wavefront sensing: Principles, Techniques and Applications(2014).

    [307] Z. Yu et al. Spin-orbit-locking vectorial metasurface holography. Adv. Mater., 24, 2415142(2024). https://doi.org/10.1002/adma.202415142

    [308] T. Nguyen et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. Opt. Express, 25, 15043(2017). https://doi.org/10.1364/OE.25.015043

    [309] G. Yu et al. Asymmetrical neural network for real-time and high-quality computer-generated holography. Opt. Lett., 48, 5351(2023). https://doi.org/10.1364/OL.497518

    [310] M. Liao et al. Scattering imaging as a noise removal in digital holography by using deep learning. New J. Phys., 24, 083014(2022). https://doi.org/10.1088/1367-2630/ac8308

    [311] K. Wang et al. One-step robust deep learning phase unwrapping. Opt. Express, 27, 15100(2019). https://doi.org/10.1364/OE.27.015100

    [312] H. Li et al. Deep DIH: single-shot digital in-line holography reconstruction by deep learning. IEEE Access, 8, 202648(2020). https://doi.org/10.1109/ACCESS.2020.3036380

    [313] J. Wu et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Opt. Lett., 46, 2908(2021). https://doi.org/10.1364/OL.425485

    [314] J. Di et al. Quantitative phase imaging using deep learning-based holographic microscope. Front. Phys., 9, 651313(2021). https://doi.org/10.3389/fphy.2021.651313

    [315] M. R. Teague. Deterministic phase retrieval: a Green’s function solution. JOSA, 73, 1434(1983). https://doi.org/10.1364/JOSA.73.001434

    [316] K. Wang et al. Transport of intensity equation from a single intensity image via deep learning. Opt. Laser. Eng., 134, 106233(2020). https://doi.org/10.1016/j.optlaseng.2020.106233

    [317] F. Wang et al. Phase imaging with an untrained neural network. Light Sci. Appl., 9, 77(2020). https://doi.org/10.1038/s41377-020-0302-3

    [318] Y. Jin et al. Neural-field-assisted transport-of-intensity phase microscopy: partially coherent quantitative phase imaging under unknown defocus distance. Photon. Res., 12, 1494(2024). https://doi.org/10.1364/PRJ.521056

    [319] A. Maric et al. Underwater optical imaging and sensing in turbidity using three-dimensional integral imaging: a review. Adv. Imaging, 2, 012001(2024). https://doi.org/10.3788/AI.2025.20002

    [320] X. Lu et al. Learning video object segmentation from unlabeled videos, 8960(2020).

    [321] R. Yao et al. Video object segmentation and tracking: a survey. ACM TIST, 11, 1(2020). https://doi.org/10.1145/3391743

    [322] G. Ciaparrone et al. Deep learning in video multi-object tracking: a survey. Neurocomputing, 381, 61(2020). https://doi.org/10.1016/j.neucom.2019.11.023

    [323] X. Lu et al. Adaptive region proposal with channel regularization for robust object tracking. IEEE Trans. Circuits Syst. Video Technol., 31, 1268(2019). https://doi.org/10.1109/TCSVT.2019.2944654

    [324] H. Altwaijry et al. Learning to detect and match keypoints with deep architectures(2016).

    [325] L. Jiao et al. A survey of deep learning-based object detection. IEEE Access, 7, 128837(2019). https://doi.org/10.1109/ACCESS.2019.2939201

    [326] A. Krizhevsky et al. ImageNet classification with deep convolutional neural networks. Commun. ACM, 60, 84(2017). https://doi.org/10.1145/3065386

    [327] S. Zhang. High-speed 3D shape measurement with structured light methods: a review. Opt. Laser. Eng., 106, 119(2018). https://doi.org/10.1016/j.optlaseng.2018.02.017

    [328] E. R. Eiríksson et al. Precision and accuracy parameters in structured light 3-D scanning, XL-5/W8, 7(2016).

    [329] T. Zhang et al. Three-dimensional measurement using structured light based on deep learning. Comput. Syst. Sci. Eng., 36, 271(2021). https://doi.org/10.32604/csse.2021.014181

    [330] Y. R. Guo et al. Method for extracting line structured light center in complex environment. Comput. Eng. Design, 40, 1133(2019).

    [331] S. Feng et al. Fringe pattern analysis using deep learning. Adv. Photon., 1, 025001(2019). https://doi.org/10.1117/1.AP.1.2.025001

    [332] J. Qian et al. Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement. APL Photon., 5, 4(2020). https://doi.org/10.1063/5.0003217

    [333] J. Qian et al. Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry. Opt. Lett., 45, 1842(2020). https://doi.org/10.1364/OL.388994

    [334] Y. Li et al. Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement. Opto-Electron. Adv., 5, 210021-1(2022). https://doi.org/10.29026/oea.2022.210021

    [335] S. Van der Jeught et al. Deep neural networks for single shot structured light profilometry. Opt. Express, 27, 17091(2019). https://doi.org/10.1364/OE.27.017091

    [336] H. Nguyen et al. Single-shot 3D shape reconstruction using structured light and deep convolutional neural networks. Sensors, 20, 3718(2020). https://doi.org/10.3390/s20133718

    [337] H. Nguyen et al. hNet: single-shot 3D shape reconstruction using structured light and h-shaped global guidance network. Results Opt., 4, 100104(2021). https://doi.org/10.1016/j.rio.2021.100104

    [338] H. Nguyen et al. MIMONet: structured-light 3D shape reconstruction by a multi-input multi-output network. Appl. Opt., 60, 5134(2021). https://doi.org/10.1364/AO.426189

    [339] A. H. Nguyen et al. Different structured-light patterns in single-shot 2D-to-3D image conversion using deep learning. Appl. Opt., 61, 10105(2022). https://doi.org/10.1364/AO.468984

    [340] R. C. Machineni et al. End-to-end deep learning-based fringe projection framework for 3D profiling of objects. Comput. Vis. Image Underst., 199, 103023(2020). https://doi.org/10.1016/j.cviu.2020.103023

    [341] L. Wang et al. 3D reconstruction from structured-light profilometry with dual-path hybrid network. Eurasip J. Adv. Sig. Process., 2022, 14. https://doi.org/10.1186/s13634-022-00848-5

    [342] T. Jia et al. Depth measurement based on a convolutional neural network and structured light. Meas. Sci. Technol., 33, 025202(2021). https://doi.org/10.1088/1361-6501/ac329d

    [343] S. Feng et al. Deep-learning-based fringe-pattern analysis with uncertainty estimation. Optica, 8, 1507(2021). https://doi.org/10.1364/OPTICA.434311

    [344] W. Yin et al. Physics-informed deep learning for fringe pattern analysis. Opto-Electron. Adv., 7, 230034(2024). https://doi.org/10.29026/oea.2024.230034

    [345] W. Chen et al. Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera. PhotoniX, 5, 25(2024). https://doi.org/10.1186/s43074-024-00139-2

    [346] J. Beltrán et al. Birdnet: a 3d object detection framework from lidar information, 3517(2018).

    [347] A. Barrera et al. Birdnet+: end-to-end 3d object detection in lidar bird’s eye view, 3517(2020).

    [348] A. Barrera et al. Birdnet+: two-stage 3d object detection in lidar through a sparsity-invariant bird’s eye view. IEEE Access, 9, 160299(2021). https://doi.org/10.1109/ACCESS.2021.3131389

    [349] C. R. Qi et al. Pointnet: deep learning on point sets for 3d classification and segmentation, 652(2017).

    [350] M. Tatarchenko et al. Octree generating networks: efficient convolutional architectures for high-resolution 3d outputs, 2088(2017).

    [351] Y. Yao et al. Mvsnet: depth inference for unstructured multi-view stereo, 767(2018).

    [352] F. Luo et al. Sparse RGB-D images create a real thing: a flexible voxel based 3D reconstruction pipeline for single object. Visual Inform., 7, 66(2023). https://doi.org/10.1016/j.visinf.2022.12.002

    [353] G. Xu et al. Attention concatenation volume for accurate and efficient stereo matching, 12981(2022).

    [354] W. Zhan et al. A semi-supervised method for patchmatch multi-view stereo with sparse points. Photonics, 9, 983(2022). https://doi.org/10.3390/photonics9120983

    [355] R. Shao et al. Diffustereo: high quality human reconstruction via diffusion-based stereo using sparse cameras, 702(2022).

    [356] D. Zheng et al. Diffuvolume: diffusion model for volume based stereo matching(2023).

    [357] K. Koshikawa. A polarimetric approach to shape understanding of glossy objects. Adv. Robotics, 2, 190(1979).

    [358] M. Saito et al. Measurement of surface orientations of transparent objects by use of polarization in highlight. JOSA A, 16, 2286(1999). https://doi.org/10.1364/JOSAA.16.002286

    [359] R. B. Fisher. From Surfaces to Objects: Computer Vision and Three Dimensional Scene Analysis(1989).

    [360] A. M. Wallace et al. Improving depth image acquisition using polarized light. Int. J. Comput. Vis., 32, 87(1999). https://doi.org/10.1023/A:1008154415349

    [361] V. Müller. Elimination of specular surface-reflectance using polarized and unpolarized light, 4, 625(1996).

    [362] Y. Zhao et al. Multi-Band Polarization Imaging(2016).

    [363] D. Miyazaki et al. Surface normal estimation of black specular objects from multiview polarization images. Opt. Eng., 56, 041303(2017). https://doi.org/10.1117/1.OE.56.4.041303

    [364] Z. Cui et al. Polarimetric multi-view stereo, 1558(2017).

    [365] W. A. P. Smith et al. Linear depth estimation from an uncalibrated, monocular polarisation image, 14, 109(2016).

    [366] A. H. Mahmoud et al. Direct method for shape recovery from polarization and shading, 1769(2012).

    [367] A. Kadambi et al. Polarized 3d: synthesis of polarization and depth cues for enhanced 3d sensing, 1(2015).

    [368] A. Kadambi et al. Depth sensing using geometrically constrained polarization normals. Int. J. Comput. Vis., 125, 34(2017). https://doi.org/10.1007/s11263-017-1025-7

    [369] Y. Ba et al. Deep shape from polarization, 16, 554(2020).

    [370] Y. Kondo et al. Accurate polarimetric BRDF for real polarization scene rendering, 16, 220(2020).

    [371] V. Deschaintre et al. Deep polarization imaging for 3d shape and svbrdf acquisition, 15567(2021).

    [372] J. Hur et al. Self-supervised monocular scene flow estimation, 7396(2020).

    [373] P. Han et al. Accurate passive 3D polarization face reconstruction under complex conditions assisted with deep learning. Photonics, 9, 924(2022). https://doi.org/10.3390/photonics9120924

    [374] X. Wu et al. Three dimensional shape reconstruction via polarization imaging and deep learning. Sensors, 23, 4592(2023). https://doi.org/10.3390/s23104592

    [375] X. Li et al. Multi-target distortion correction in 3D shape from polarization using a monocular camera system by deep neural networks. Opt. Lett., 48, 5053(2023). https://doi.org/10.1364/OL.499161

    [376] T. Huang et al. Learning accurate 3d shape based on stereo polarimetric imaging, 17287(2023).

    [377] R. Girshick et al. Rich feature hierarchies for accurate object detection and semantic segmentation, 580(2014).

    [378] R. Girshick. Fast r-cnn, 1440(2015).

    [379] S. Ren et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell., 39, 1137(2016). https://doi.org/10.1109/TPAMI.2016.2577031

    [380] J. Redmon et al. You only look once: unified, real-time object detection, 779(2016).

    [381] W. Liu et al. SSD: Single shot multibox detector, 14, 21(2016).

    [382] H. Law et al. Cornernet: detecting objects as paired keypoints, 734(2018).

    [383] L. B. Wolff. Polarization-based material classification from specular reflection. IEEE Trans. Pattern Anal. Mach. Intell., 12, 1059(1990). https://doi.org/10.1109/34.61705

    [384] L. B. Wolff. Surface orientation from polarization images, 850, 110(1988).

    [385] D. H. Goldstein. Polarized Light(2017).

    [386] J. S. Lee et al. Polarimetric Radar Imaging: From Basics to Applications(2017).

    [387] J. S. Tyo et al. Target detection in optically scattering media by polarization-difference imaging. Appl. Opt., 35, 1855(1996). https://doi.org/10.1364/AO.35.001855

    [388] W. Fan et al. Polarization-based car detection, 3069(2018).

    [389] Y. Pang et al. Progressive polarization based reflection removal via realistic training data generation. Pattern Recogn., 124, 108497(2022). https://doi.org/10.1016/j.patcog.2021.108497

    [390] A. Tan et al. Object detection based on polarization image fusion and grouped convolutional attention network. Vis. Comput., 40, 3199(2024). https://doi.org/10.1007/s00371-023-03022-6

    [391] Y. Tian et al. Face anti-spoofing by learning polarization cues in a real-world scenario, 129(2020).

    [392] K. Usmani et al. Deep learning polarimetric three-dimensional integral imaging object recognition in adverse environmental conditions. Opt. Express, 29, 12215(2021). https://doi.org/10.1364/OE.421287

    [393] J. Huang et al. Snapshot polarization-sensitive holography for detecting microplastics in turbid water. ACS Photonics, 10, 4483(2023). https://doi.org/10.1021/acsphotonics.3c01350

    [394] R. Wang et al. Detection and classification of cotton foreign fibers based on polarization imaging and improved YOLOv5. Sensors, 23, 4415(2023). https://doi.org/10.3390/s23094415

    [395] K. Yang et al. Predicting polarization beyond semantics for wearable robotics, 96(2018).

    [396] Y. Zhang et al. Exploration of deep learning-based multimodal fusion for semantic road scene segmentation(2019).

    [397] M. Blanchon et al. Outdoor scenes pixel-wise semantic segmentation using polarimetry and fully convolutional network(2019).

    [398] Y. Qiao et al. Multi-view spectral polarization propagation for video glass segmentation, 23218(2023).

    [399] C. Liu et al. An unsupervised snow segmentation approach based on dual-polarized scattering mechanism and deep neural network. IEEE Trans. Geosci. Remote Sens., 61, 1(2023). https://doi.org/10.1109/TGRS.2023.3262727

    [400] G. M. de Souza Moreno et al. Deep semantic segmentation of mangroves in Brazil combining spatial, temporal, and polarization data from Sentinel-1 time series. Ocean Coast. Manage., 231, 106381(2023). https://doi.org/10.1016/j.ocecoaman.2022.106381

    [401] H. Farid et al. Separating reflections and lighting using independent components analysis, 262(1999).

    [402] Y. Y. Schechner et al. Polarization-based decorrelation of transparent layers: the inclination angle of an invisible surface, 814(1999).

    [403] R. Wan et al. Benchmarking single-image reflection removal algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 45, 1424(2022). https://doi.org/10.1109/TPAMI.2022.3168560

    [404] A. M. Bronstein et al. “Sparse ICA for blind separation of transmitted and reflected images. Int. J. Imaging Syst. Technol., 15, 84(2005). https://doi.org/10.1002/ima.20042

    [405] N. Kong et al. A physically-based approach to reflection separation: from physical modeling to constrained optimization. IEEE Trans. Pattern Anal. Mach. Intell., 36, 209(2013). https://doi.org/10.1109/TPAMI.2013.45

    [406] P. Wieschollek et al. Separating reflection and transmission images in the wild, 89(2018).

    [407] C. Lei et al. Polarized reflection removal with perfect alignment in the wild, 1750(2020).

    [408] X. Xu et al. ColorPolarNet: residual dense network-based chromatic intensity-polarization imaging in low-light environment. IEEE Trans. Instrum. Meas., 71, 1(2022). https://doi.org/10.1109/TIM.2022.3216391

    [409] G. C. Sargent et al. Conditional generative adversarial network demosaicing strategy for division of focal plane polarimeters. Opt. Express, 28, 38419(2020). https://doi.org/10.1364/OE.412687

    [410] Y. Sun et al. Color polarization demosaicking by a convolutional neural network. Opt. Lett., 46, 4338(2021). https://doi.org/10.1364/OL.431919

    [411] M. Pistellato et al. Deep demosaicing for polarimetric filter array cameras. IEEE Trans. Image Process., 31, 2017(2022). https://doi.org/10.1109/TIP.2022.3150296

    [412] J. Duan et al. Joint target geometry and polarization properties for polarization image fusion. Opt. Laser. Eng., 178, 108176(2024). https://doi.org/10.1016/j.optlaseng.2024.108176

    [413] D. Ivanov et al. Polarization and depolarization metrics as optical markers in support to histopathology of ex vivo colon tissue. Bio. Opt. Express, 12, 4560(2021). https://doi.org/10.1364/BOE.426713

    [414] O. Rodríguez-Núñez et al. Polarimetric visualization of healthy brain fiber tracts under adverse conditions: ex vivo studies. Bio. Opt. Express, 12, 6674(2021). https://doi.org/10.1364/BOE.439754

    [415] H. R. Lee et al. Mueller matrix imaging for collagen scoring in mice model of pregnancy. Sci. Rep., 11, 15621(2021). https://doi.org/10.1038/s41598-021-95020-8

    [416] P. Schucht et al. Visualization of white matter fiber tracts of brain tissue sections with wide-field imaging Mueller polarimetry. IEEE Trans. Med. Imaging, 39, 4376(2020). https://doi.org/10.1109/TMI.2020.3018439

    [417] T. Novikova et al. Multi-spectral Mueller matrix imaging polarimetry for studies of human tissues, TTh3B.2(2016).

    [418] V. Dremin et al. Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning. IEEE Trans. Med. Imaging, 40, 1207(2021). https://doi.org/10.1109/TMI.2021.3049591

    [419] C. Rodríguez et al. Polarimetric data-based model for tissue recognition. Bio. Opt. Express, 12, 4852(2021). https://doi.org/10.1364/BOE.426387

    [420] Y. Zhu et al. Probing layered structures by multi-color backscattering polarimetry and machine learning. Bio. Opt. Express, 12, 4324(2021). https://doi.org/10.1364/BOE.425614

    [421] M. S. Yousaf et al. Machine assisted classification of chicken, beef and mutton tissues using optical polarimetry and Bagging model. Photodiagn. Photodyn., 31, 101779(2020). https://doi.org/10.1016/j.pdpdt.2020.101779

    [422] Y. Quéau et al. Learning to classify materials using Mueller imaging polarimetry, 11172, 246(2019).

    [423] T. Huang et al. Artificial intelligence for medicine: progress, challenges, and perspectives. Inno. Med., 1, 2(2023). https://doi.org/10.59717/j.xinn-med.2023.100030

    [424] I. J. Vaughn et al. Classification using active polarimetry, 8364, 243(2012).

    [425] S. Panigrahi et al. Machine learning techniques used for the histopathological image analysis of oral cancer—a review. Open Bioinformat. J., 13, 106(2020). https://doi.org/10.2174/1875036202013010106

    [426] N. T. Luu et al. Characterization of Mueller matrix elements for classifying human skin cancer utilizing random forest algorithm. J. Bio. Opt., 26, 075001(2021). https://doi.org/10.1088/2040-8986/ad4722

    [427] I. Ahmad et al. Polarimetry based partial least square classification of ex vivo healthy and basal cell carcinoma human skin tissues. Photodiagn. Photodyn., 14, 134(2016). https://doi.org/10.1016/j.pdpdt.2016.04.004

    [428] X. Zhou et al. Automatic detection of head and neck squamous cell carcinoma on pathologic slides using polarized hyperspectral imaging and machine learning, 11603, 165(2021).

    [429] S. Mukhopadhyay et al. Optical diagnosis of colon and cervical cancer by support vector machine, 9887, 46(2016).

    [430] V. Dremin et al. Optical percutaneous needle biopsy of the liver: a pilot animal and clinical study. Sci. Rep., 10, 14200(2020). http://10.1038/S41598-020-71089-5

    [431] E. Zherebtsov et al. Machine learning aided photonic diagnostic system for minimally invasive optically guided surgery in the hepatoduodenal area. Diagnostics, 10, 873(2020). https://doi.org/10.3390/diagnostics10110873

    [432] G. Wang et al. Machine learning-based rapid diagnosis of human borderline ovarian cancer on second-harmonic generation images. Bio. Opt. Express, 12, 5658(2021). https://doi.org/10.1364/BOE.429918

    [433] Y. Dong et al. Deriving polarimetry feature parameters to characterize microstructural features in histological sections of breast tissues. IEEE Trans. Biomed. Eng., 68, 881(2020). https://doi.org/10.1109/TBME.2020.3019755

    [434] X. Li et al. Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks. Appl. Opt., 56, 6520(2017). https://doi.org/10.1364/AO.56.006520

    [435] X. Li et al. Polarimetric learning: a Siamese approach to learning distance metrics of algal Mueller matrix images. Appl. Opt., 57, 3829(2018). https://doi.org/10.1364/AO.57.003829

    [436] R. Bi et al. Pulse feature-enhanced classification of microalgae and cyanobacteria using polarized light scattering and fluorescence signals. Biosensors, 14, 160(2024). https://doi.org/10.3390/bios14040160

    [437] H. He et al. Mueller matrix polarimetry—an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol., 37, 2534(2018). https://doi.org/10.1109/JLT.2018.2868845

    [438] Y. Dong et al. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Bio. Opt. Express, 8, 3643(2017). https://doi.org/10.1364/BOE.8.003643

    [439] T. Liu et al. Distinguishing structural features between Crohn’s disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters. J. Biophoton., 12, e201900151(2019). https://doi.org/10.1002/jbio.201900151

    [440] Y. Wang et al. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope. Micron, 79, 8(2015). https://doi.org/10.1016/j.micron.2015.07.014

    [441] Y. Wang et al. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J. Bio. Opt., 21, 071112(2016). https://doi.org/10.1117/1.JBO.21.7.071112

    [442] D. Ivanov et al. Polarization-based histopathology classification of ex vivo colon samples supported by machine learning. Front. Phys., 9, 814787(2022). https://doi.org/10.3389/fphy.2021.814787

    [443] Y. Dong et al. A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans. Med. Imaging, 40, 3728(2021). https://doi.org/10.1109/TMI.2021.3097200

    [444] M. Dunlop-Gray et al. Experimental demonstration of an adaptive architecture for direct spectral imaging classification. Opt. Express, 24, 18307(2016). https://doi.org/10.1364/OE.24.018307

    [445] C. Hinojosa et al. Spectral-spatial classification from multi-sensor compressive measurements using superpixels, 3413(2019).

    [446] C. Hinojosa et al. C-3SPCD: coded aperture similarity constrained design for spatio-spectral classification of single-pixel measurements. Appl. Opt., 61, E21(2022). https://doi.org/10.1364/AO.445326

    [447] M. Silva-Maldonado et al. End-to-end compressive spectral classification: a deep learning approach applied to the grading of Tahiti lime, 44(2021).

    [448] K. He et al. Deep residual learning for image recognition, 770(2016).

    [449] H. Zhang et al. Compressive hyperspectral image classification using a 3D coded convolutional neural network. Opt. Express, 29, 32875(2021). https://doi.org/10.1364/OE.437717

    [450] S. Li et al. Deep learning for hyperspectral image classification: an overview. IEEE Trans. Geosci. Remote Sens., 57, 6690(2019). https://doi.org/10.1109/TGRS.2019.2907932

    [451] Y. Chen et al. Hyperspectral images classification with Gabor filtering and convolutional neural network. IEEE Geosci. Remote Sens. Lett., 14, 2355(2017). https://doi.org/10.1109/LGRS.2017.2764915

    [452] L. Zhu et al. Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens., 56, 5046(2018). https://doi.org/10.1109/TGRS.2018.2805286

    [453] B. Liu et al. Supervised deep feature extraction for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens., 56, 1909(2017). https://doi.org/10.1109/TGRS.2017.2769673

    [454] C. Quintano et al. Spectral unmixing. Int. J. Remote Sens., 33, 5307(2012). https://doi.org/10.1080/01431161.2012.661095

    [455] M. Petrou. Mixed pixel classification: an overview, 69(1999).

    [456] J. Yu et al. Comparison of linear and nonlinear spectral unmixing approaches: a case study with multispectral TM imagery. Int. J. Remote Sens., 38, 773(2017). https://doi.org/10.1080/01431161.2016.1271475

    [457] N. Dobigeon et al. A comparison of nonlinear mixing models for vegetated areas using simulated and real hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 7, 1869(2014). https://doi.org/10.1109/JSTARS.2014.2328872

    [458] W. Fan et al. Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data. Int. J. Remote Sens., 30, 2951(2009). https://doi.org/10.1080/01431160802558659

    [459] Y. Altmann et al. Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery, 1009(2011).

    [460] J. Zhang et al. Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery: statistical and artificial neural network approaches. Int. J. Remote Sens., 22, 615(2001). https://doi.org/10.1080/01431160050505883

    [461] B. Schölkopf et al. New support vector algorithms. Neural Comput., 12, 1207(2000). https://doi.org/10.1162/089976600300015565

    [462] J. Plaza et al. Nonlinear mixture models for analyzing laboratory simulated-forest hyperspectral data, 5238, 480(2004).

    [463] J. S. Bhatt et al. Deep learning in hyperspectral unmixing: a review, 2189(2020).

    [464] D. Jin et al. Graph attention convolutional autoencoder-based unsupervised nonlinear unmixing for hyperspectral images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 16, 7896(2023). https://doi.org/10.1109/JSTARS.2023.3308037

    [465] P. V. Arun et al. Graph neural network based interpretable spectral unmixing for hyperspectral unmixing hyperspectral IIRS data onboard chandrayaan-2 mission, 4202(2023).

    [466] H. Hua et al. A dual-stream convolutional feature fusion network for hyperspectral unmixing, 7531(2023).

    [467] S. K. Bashetti et al. Self-supervised deep network for automatic target recognition in SAR, 8158(2023).

    [468] X. Yuan et al. Snapshot compressive imaging: theory, algorithms, and applications. IEEE Signal Process Mag., 38, 65(2021). https://doi.org/10.1109/MSP.2020.3023869

    [469] M. Qiao et al. Deep learning for video compressive sensing. APL Photonics, 5, 3(2020). https://doi.org/10.1063/1.5140721

    [470] S. H. Chan et al. Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans. Comput. Imaging, 3, 84(2016). https://doi.org/10.1109/TCI.2016.2629286

    [471] J. Ma et al. Deep tensor ADMM-net for snapshot compressive imaging, 10223(2019).

    [472] Y. Fu et al. Coded hyperspectral image reconstruction using deep external and internal learning. IEEE Trans. Pattern Anal. Mach. Intell., 44, 3404(2021). https://doi.org/10.1109/TPAMI.2021.3059911

    [473] L. Wang et al. Hyperreconnet: joint coded aperture optimization and image reconstruction for compressive hyperspectral imaging. IEEE Trans. Image Process., 28, 2257(2018). https://doi.org/10.1109/TIP.2018.2884076

    [474] L. Wang et al. Hyperspectral image reconstruction using a deep spatial-spectral prior, 8032(2019).

    [475] L. Wang et al. DNU: deep non-local unrolling for computational spectral imaging, 161(2020).

    [476] D. Ulyanov et al. Deep image prior, 9446(2018).

    [477] D. S. Jeon et al. Compact snapshot hyperspectral imaging with diffracted rotation(2019).

    [478] J. Hauser et al. DD-Net: spectral imaging from a monochromatic dispersed and diffused snapshot. Appl. Opt., 59, 11196(2020). https://doi.org/10.1364/AO.404524

    [479] K. Monakhova et al. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array. Optica, 7, 1298(2020). https://doi.org/10.1364/OPTICA.397214

    [480] A. Robles-Kelly. Single image spectral reconstruction for multimedia applications, 251(2015).

    [481] S. Galliani et al. Learned spectral super-resolution(2017).

    [482] S. Nie et al. Deeply learned filter response functions for hyperspectral reconstruction, 4767(2018).

    [483] H. Song et al. Deep-learned broadband encoding stochastic filters for computational spectroscopic instruments. Adv. Theor. Simul., 4, 2000299(2021). https://doi.org/10.1002/adts.202000299

    [484] O. Ronneberger et al. U-net: convolutional networks for biomedical image segmentation, 234(2015).

    [485] W. Shi et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, 1874(2016).

    [486] H. Xu et al. U2Fusion: a unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell., 44, 502(2020). https://doi.org/10.1109/TPAMI.2020.3012548

    [487] D. K. Sahu et al. Different image fusion techniques–a critical review. IJMER, 2, 4298(2012).

    [488] Y. Liu et al. A general framework for image fusion based on multi-scale transform and sparse representation. Inform. Fusion, 24, 147(2015). https://doi.org/10.1016/j.inffus.2014.09.004

    [489] J. Ma et al. SwinFusion: cross-domain long-range learning for general image fusion via Swin Transformer. IEEE/CAA J. Autom. Sin., 9, 1200(2022). https://doi.org/10.1109/JAS.2022.105686

    [490] S. Li et al. Multifocus image fusion using artificial neural networks. Pattern Recogn. Lett., 23, 985(2002). https://doi.org/10.1016/S0167-8655(02)00029-6

    [491] Y. Liu et al. “Multi-focus image fusion with a deep convolutional neural network. Inform. Fusion, 36, 191(2017). https://doi.org/10.1016/j.inffus.2016.12.001

    [492] X. Guo et al. FuseGAN: learning to fuse multi-focus image via conditional generative adversarial network. IEEE Trans. Multimedia, 21, 1982(2019). https://doi.org/10.1109/TMM.2019.2895292

    [493] J. Li et al. DRPL: deep regression pair learning for multi-focus image fusion. IEEE Trans. Image Process., 29, 4816(2020). https://doi.org/10.1109/TIP.2020.2976190

    [494] B. Xiao et al. Global-feature encoding U-Net (GEU-Net) for multi-focus image fusion. IEEE Trans. Image Process., 30, 163(2020). https://doi.org/10.1109/TIP.2020.3033158

    [495] H. Ma et al. An α-matte boundary defocus model-based cascaded network for multi-focus image fusion. IEEE Trans. Image Process., 29, 8668(2020). https://doi.org/10.1109/TIP.2020.3018261

    [496] H. Zhang et al. MSTCNN: A transformer with multi-scale convolutional neural network for multi-focus image fusion(2023). https://doi.org/10.21203/rs.3.rs-3303519/v1

    [497] H. Li et al. Multi-focus image fusion using u-shaped networks with a hybrid objective. IEEE Sensors J., 19, 9755(2019). https://doi.org/10.1109/JSEN.2019.2928818

    [498] X. Yan et al. Structural similarity loss for learning to fuse multi-focus images. Sensors, 20, 6647(2020). https://doi.org/10.3390/s20226647

    [499] J. Huang et al. A generative adversarial network with adaptive constraints for multi-focus image fusion. Neural Comput. Appl., 32, 15119(2020). https://doi.org/10.1007/s00521-020-04863-1

    [500] S. Li et al. Image fusion with guided filtering. IEEE Trans. Image Process., 22, 2864(2013). https://doi.org/10.1109/TIP.2013.2244222

    [501] X. Qiu et al. Guided filter-based multi-focus image fusion through focus region detection. Signal Process. Image Commun., 72, 35(2019). http://10.1016/j.image.2018.12.004

    [502] H. Li et al. Multi-focus image fusion based on nonsubsampled contourlet transform and focused regions detection. Optik, 124, 40(2013). https://doi.org/10.1016/j.ijleo.2011.11.088

    [503] Y. Liu et al. Multi-focus image fusion with dense SIFT. Inform. Fusion, 23, 139(2015). https://doi.org/10.1016/j.inffus.2014.05.004

    [504] X. Jin et al. Adversarial attacks on multi-focus image fusion models. Comput. Secur., 134, 103455(2023). https://doi.org/10.1016/j.cose.2023.103455

    [505] J. Li et al. Multi-focus image fusion based on multiscale fuzzy quality assessment. Digit. Signal Process., 153, 104592(2024). https://doi.org/10.1016/j.dsp.2024.104592

    [506] J. Zhang et al. Exploit the best of both end-to-end and map-based methods for multi-focus image fusion. IEEE Trans. Multimedia, 26, 6411(2024). https://doi.org/10.1109/TMM.2024.3350924

    [507] H. Xu et al. MEF-GAN: Multi-exposure image fusion via generative adversarial networks. IEEE Trans. Image Process., 29, 7203(2020). https://doi.org/10.1109/TIP.2020.2999855

    [508] N. K. Kalantari et al. Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graph., 36, 1(2017). https://doi.org/10.1145/3072959.3073609

    [509] J. Wang et al. End-to-end exposure fusion using convolutional neural network. IEICE Trans. Inf. Syst., E101.D, 560(2018). https://doi.org/10.1587/transinf.2017EDL8173

    [510] Z. Pan et al. Multi-exposure high dynamic range imaging with informative content enhanced network. Neurocomputing, 386, 147(2020). https://doi.org/10.1016/j.neucom.2019.12.093

    [511] X. Deng et al. Deep coupled feedback network for joint exposure fusion and image super-resolution. IEEE Trans. Image Process., 30, 3098(2021). https://doi.org/10.1109/TIP.2021.3058764

    [512] K. Ram Prabhakar et al. Deepfuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs, 4714(2017).

    [513] H. Xu et al. MEF-GAN: multi-exposure image fusion via generative adversarial networks. IEEE Trans. Image Process., 29, 7203(2020). https://doi.org/10.1109/TIP.2020.2999855

    [514] J. Cai et al. Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process., 27, 2049(2018). https://doi.org/10.1109/TIP.2018.2794218

    [515] Z. Yang et al. GANFuse: a novel multi-exposure image fusion method based on generative adversarial networks. Neural Comput. Appl., 33, 6133(2021). https://doi.org/10.1007/s00521-020-05387-4

    [516] F. Xu et al. Multi-exposure image fusion techniques: a comprehensive review. Remote Sens., 14, 771(2022). https://doi.org/10.3390/rs14030771

    [517] H. Zhang et al. SDNet: a versatile squeeze-and-decomposition network for real-time image fusion. Int. J. Comput. Vis., 129, 2761(2021). https://doi.org/10.1007/s11263-021-01501-8

    [518] L. Jian et al. SEDRFuse: a symmetric encoder–decoder with residual block network for infrared and visible image fusion. IEEE Trans. Instrum. Meas., 70, 1(2020). https://doi.org/10.1109/TIM.2020.3022438

    [519] J. Xu et al. An infrared and visible image fusion network based on multi‐scale feature cascades and non‐local attention. IET Image Process., 18, 8(2024). https://doi.org/10.1049/ipr2.13088

    [520] L. Tang et al. DIVFusion: darkness-free infrared and visible image fusion. Inform. Fusion, 91, 477(2023). https://doi.org/10.1016/j.inffus.2022.10.034

    [521] Y. Li et al. Unsupervised densely attention network for infrared and visible image fusion. Multimedia Tools Appl., 79, 34685(2020). https://doi.org/10.1007/s11042-020-09301-x

    [522] Y. Zhou et al. A multi-weight fusion framework for infrared and visible image fusion. Multimedia Tools Appl., 83, 68931(2024). https://doi.org/10.1007/s11042-024-18141-y

    [523] J. Ma et al. FusionGAN: a generative adversarial network for infrared and visible image fusion. Inform. Fusion, 48, 11(2019). https://doi.org/10.1016/j.inffus.2018.09.004

    [524] J. Ma et al. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans. Image Process., 29, 4980(2020). https://doi.org/10.1109/TIP.2020.2977573

    [525] J. Wu et al. GAN-GA: infrared and visible image fusion generative adversarial network based on global awareness. Appl. Intell., 54, 7296(2024). https://doi.org/10.1007/s10489-024-05561-4

    [526] J. Du et al. An overview of multi-modal medical image fusion. Neurocomputing, 215, 3(2016). https://doi.org/10.1016/j.neucom.2015.07.160

    [527] A. P. James et al. Medical image fusion: a survey of the state of the art. Inform. Fusion, 19, 4(2014). https://doi.org/10.1016/j.inffus.2013.12.002

    [528] Y. Liu et al. A medical image fusion method based on convolutional neural networks, 1(2017).

    [529] J. Fu et al. “A multiscale residual pyramid attention network for medical image fusion. Biomed. Signal Process. Control, 66, 102488(2021). https://doi.org/10.1016/j.bspc.2021.102488

    [530] O. C. Do et al. An efficient approach to medical image fusion based on optimization and transfer learning with VGG19. Biomed. Signal Process. Control, 87, 105370(2024). https://doi.org/10.1016/j.bspc.2023.105370

    [531] N. Liang et al. Medical image fusion with deep neural networks. Sci. Rep., 14, 7972(2024). https://doi.org/10.1038/s41598-024-58665-9

    [532] Y. Zhou et al. Multimodal medical image fusion network based on target information enhancement. IEEE Access, 12, 70851(2024).

    [533] T. Zhou et al. Deep learning methods for medical image fusion: A review. Comput. Biol. Med., 160, 106959(2023). https://doi.org/10.1016/j.compbiomed.2023.106959

    [534] Y. Wei et al. Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geosci. Remote Sens. Lett., 14, 1795(2017). https://doi.org/10.1109/LGRS.2017.2736020

    [535] G. Masi et al. Pansharpening by convolutional neural networks. Remote Sens., 8, 594(2016). https://doi.org/10.3390/rs8070594

    [536] J. Cai et al. Super-resolution-guided progressive pansharpening based on a deep convolutional neural network. IEEE Trans. Geosci. Remote Sens., 59, 5206(2020). https://doi.org/10.1109/TGRS.2020.3015878

    [537] A. Guo et al. Unsupervised blur kernel learning for pansharpening, 633(2020).

    [538] Q. Liu et al. Supervised-unsupervised combined deep convolutional neural networks for high-fidelity pansharpening. Inform. Fusion, 89, 292(2023). https://doi.org/10.1016/j.inffus.2022.08.018

    [539] Q. Liu et al. PSGAN: a generative adversarial network for remote sensing image pan-sharpening. IEEE Trans. Geosci. Remote Sens., 59, 10227(2020). https://doi.org/10.1109/TGRS.2020.3042974

    [540] Y. Wu et al. Pansharpening using unsupervised generative adversarial networks with recursive mixed-scale feature fusion. IEEE J. Sel. Topics Appl. Earth Observ. Rem. Sens., 16, 3742(2023).

    [541] J. Ma et al. Pan-GAN: an unsupervised pan-sharpening method for remote sensing image fusion. Inform. Fusion, 62, 110(2020). https://doi.org/10.1016/j.inffus.2020.04.006

    [542] L. He et al. Unsupervised pansharpening based on double-cycle consistency(2024).

    [543] L. Fan et al. Brief review of image denoising techniques. Vis. Comput. Ind, Biomed., 2, 7(2019). https://doi.org/10.1186/s42492-019-0016-7

    [544] S. Izadi et al. Image denoising in the deep learning era. Artif. Intell. Rev., 56, 5929(2023). https://doi.org/10.1007/s10462-022-10305-2

    [545] X. Mao et al. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections, 26(2016).

    [546] T. Wang et al. Dilated deep residual network for image denoising, 1272(2017).

    [547] J. Guo et al. Toward convolutional blind denoising of real photographs, 1712(2019).

    [548] C. Tian et al. Image denoising using deep CNN with batch renormalization. Neural Netw., 121, 461(2020). https://doi.org/10.1016/j.neunet.2019.08.022

    [549] S. Rezvani et al. Single image denoising via a new lightweight learning-based model. IEEE Access, 12, 121077(2024). https://doi.org/10.1109/ACCESS.2024.3450842

    [550] W. Wu et al. Dual residual attention network for image denoising. Pattern Recogn., 149, 110291(2024). https://doi.org/10.1016/j.patcog.2024.110291

    [551] J. Chen et al. Image blind denoising with generative adversarial network based noise modeling, 3155(2018).

    [552] Y. Wang et al. RCA-GAN: an improved image denoising algorithm based on generative adversarial networks. Electronics, 12, 4595(2023). https://doi.org/10.3390/electronics12224595

    [553] V. Lempitsky et al. Deep image prior, 9946(2018).

    [554] G. Mataev et al. DeepRED: deep image prior powered by RED(2019).

    [555] Y. Wang et al. Hyperspectral denoising using asymmetric noise modeling deep image prior. Remote Sens., 15, 1970(2023). https://doi.org/10.3390/rs15081970

    [556] J. Lehtinen et al. Noise2Noise: learning image restoration without clean data(2018).

    [557] S. Laine et al. High-quality self-supervised deep image denoising, 32(2019).

    [558] S. Soltanayev et al. Training deep learning based denoisers without ground truth data, 31(2018).

    [559] M. Zhussip et al. Extending Stein’s unbiased risk estimator to train deep denoisers with correlated pairs of noisy images, 32(2019).

    [560] Y. Zhang et al. Kindling the darkness: a practical low-light image enhancer, 1632(2019).

    [561] Y. Xiang et al. WMANet: Wavelet-based multi-scale attention network for low-light image enhancement. IEEE Access, 12, 105674(2024).

    [562] S. Yang et al. Rethinking low-light enhancement via transformer-GAN. IEEE Signal Process Lett., 29, 1082(2022). https://doi.org/10.1109/LSP.2022.3167331

    [563] Y. Liu et al. PD-GAN: perceptual-details gan for extremely noisy low light image enhancement, 1840(2021).

    [564] W. Han et al. UM‐GAN: Underground mine GAN for underground mine low‐light image enhancement. IET Image Process., 18, 2154(2024). https://doi.org/10.1049/ipr2.13092

    [565] M. Gharbi et al. Deep bilateral learning for real-time image enhancement. ACM TOG, 36, 1(2017). https://doi.org/10.1145/3072959.3073592

    [566] F. Lv et al. MBLLEN: low-light image/video enhancement using CNNS. BMVC, 220, 4(2018).

    [567] J. Perez et al. A deep learning approach for underwater image enhancement, 183(2017).

    [568] X. Cao et al. NUICNet: non-uniform illumination correction for underwater image using fully convolutional network. IEEE Access, 8, 109989(2020). https://doi.org/10.1109/ACCESS.2020.3002593

    [569] J. Li et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Rob. Autom. Lett., 3, 387(2017).

    [570] N. Wang et al. UWGAN: underwater GAN for real-world underwater color restoration and dehazing(2019).

    [571] Q. Liu et al. WSDS-GAN: a weak-strong dual supervised learning method for underwater image enhancement. Pattern Recogn., 143, 109774(2023). https://doi.org/10.1016/j.patcog.2023.109774

    [572] B. Li et al. An all-in-one network for dehazing and beyond(2017).

    [573] W. Ren et al. Gated fusion network for single image dehazing, 3253(2018).

    [574] L. Li et al. Semi-supervised image dehazing. IEEE Trans. Image Process., 29, 2766(2019). https://doi.org/10.1109/TIP.2019.2952690

    [575] J. Park et al. Fusion of heterogeneous adversarial networks for single image dehazing. IEEE Trans. Image Process., 29, 4721(2020). https://doi.org/10.1109/TIP.2020.2975986

    [576] C. Dong et al. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell., 38, 295(2015). https://doi.org/10.1109/TPAMI.2015.2439281

    [577] C. Ledig et al. Photo-realistic single image super-resolution using a generative adversarial network, 4681(2017).

    [578] Y. Chen et al. Image super-resolution reconstruction based on feature map attention mechanism. Appl. Intell., 51, 4367(2021). https://doi.org/10.1007/s10489-020-02116-1

    [579] J. Tu et al. SWCGAN: generative adversarial network combining swin transformer and CNN for remote sensing image super-resolution. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 15, 5662(2022). https://doi.org/10.1109/JSTARS.2022.3190322

    [580] H. Shen et al. Lossless compression of curated erythrocyte images using deep autoencoders for malaria infection diagnosis, 1(2016).

    [581] F. Mentzer et al. Practical full resolution learned lossless image compression, 10629(2019).

    [582] H. Rhee et al. LC-FDNet: learned lossless image compression with frequency decomposition network, 6033(2022).

    [583] Q. Min et al. Lossless medical image compression based on anatomical information and deep neural networks. Biomed. Signal Proces., 74, 103499(2022). https://doi.org/10.1016/j.bspc.2022.103499

    [584] W. Li et al. Deep image compression with residual learning. Appl. Sci., 10, 4023(2020). https://doi.org/10.3390/app10114023

    [585] Z. Cheng et al. Learned image compression with discretized gaussian mixture likelihoods and attention modules, 7939(2020).

    [586] T. Chen et al. End-to-end learnt image compression via non-local attention optimization and improved context modeling. IEEE Trans. Image Process., 30, 3179(2021). https://doi.org/10.1109/TIP.2021.3058615

    [587] A. Tawfik et al. A generic real time autoencoder-based lossy image compression, 1(2022).

    Xiyuan Luo, Sen Wang, Jinpeng Liu, Xue Dong, Piao He, Qingyu Yang, Xi Chen, Feiyan Zhou, Tong Zhang, Shijie Feng, Pingli Han, Zhiming Zhou, Meng Xiang, Jiaming Qian, Haigang Ma, Shun Zhou, Linpeng Lu, Chao Zuo, Zihan Geng, Yi Wei, Fei Liu, "Revolutionizing optical imaging: computational imaging via deep learning," Photon. Insights 4, R03 (2025)
    Download Citation