• Frontiers of Optoelectronics
  • Vol. 8, Issue 2, 128 (2015)
Zhenyang DING, Chia-Pin LIANG, and Yu CHEN*
Author Affiliations
  • Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
  • show less
    DOI: 10.1007/s12200-015-0475-1 Cite this Article
    Zhenyang DING, Chia-Pin LIANG, Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Frontiers of Optoelectronics, 2015, 8(2): 128 Copy Citation Text show less
    References

    [1] Hee M R, Huang D, Swanson E A, Fujimoto J G. Polarizationsensitive low-coherence reflectometer for birefringence characterization and ranging. Journal of the Optical Society of America. B, Optical Physics, 1992, 9(6): 903–908

    [2] Huang D, Swanson E A, Lin C P, Schuman J S, StinsonWG, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A. Optical coherence tomography. Science, 1991, 254(5035): 1178–1181

    [3] de Boer J, Srinivas S, Malekafzali A, Chen Z, Nelson J. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Optics Express, 1998, 3(6): 212–218

    [4] Schoenenberger K, Colston B W, Maitland D J, Da Silva L B, Everett M J. Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography. Applied Optics, 1998, 37(25): 6026–6036

    [5] Park B H, Saxer C, Srinivas S M, Nelson J S, de Boer J F. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 2001, 6(4): 474–479

    [6] Jiao S, Wang L V. Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. Journal of Biomedical Optics, 2002, 7(3): 350–358

    [7] Jiao S, Yu W, Stoica G, Wang L V. Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. Applied Optics, 2003, 42(25): 5191–5197

    [8] Pierce M C, Strasswimmer J, Park B H, Cense B, de Boer J F. Advances in optical coherence tomography imaging for dermatology. The Journal of Investigative Dermatology, 2004, 123(3): 458– 463

    [9] Srinivas S M, de Boer J F, Park H, Keikhanzadeh K, Huang H E, Zhang J, Jung W Q, Chen Z, Nelson J S. Determination of burn depth by polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 207–212

    [10] Strasswimmer J, Pierce M C, Park B H, Neel V, de Boer J F. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. Journal of Biomedical Optics, 2004, 9(2): 292–298

    [11] Duan L, Marvdashti T, Lee A, Tang J Y, Ellerbee A K. Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2014, 5 (10): 3717–3729

    [12] Pircher M, Goetzinger E, Leitgeb R, Hitzenberger C K. Transversal phase resolved polarization sensitive optical coherence tomography. Physics in Medicine and Biology, 2004, 49(7): 1257–1263

    [13] G tzinger E, Pircher M, Sticker M, Fercher A F, Hitzenberger C K. Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 94–102

    [14] DucrosMG, de Boer J F, Huang H E, Chao L C, Chen Z P, Nelson J S, Milner T E, Rylander H III. Polarization sensitive optical coherence tomography of the rabbit eye. IEEE Journal on Selected Topics in Quantum Electronics, 1999, 5(4): 1159–1167

    [15] Ducros M G, Marsack J D, Rylander H G 3rd, Thomsen S L, Milner T E. Primate retina imaging with polarization-sensitive optical coherence tomography. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(12): 2945–2956

    [16] Cense B, Chen T C, Park B H, Pierce M C, de Boer J F. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 121–125

    [17] G tzinger E, Pircher M, Hitzenberger C K. High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Optics Express, 2005, 13(25): 10217–10229

    [18] Kemp N J, Park J, Zaatari H N, Rylander H G, Milner T E. Highsensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2005, 22(3): 552–560

    [19] Baumann B, Choi W, Potsaid B, Huang D, Duker J S, Fujimoto J G. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit. Optics Express, 2012, 20(9): 10229–10241

    [20] G tzinger E, Pircher M, Geitzenauer W, Ahlers C, Baumann B, Michels S, Schmidt-Erfurth U, Hitzenberger C K. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Optics Express, 2008, 16(21): 16410–16422

    [21] Zotter S, Pircher M, Torzicky T, Baumann B, Yoshida H, Hirose F, Roberts P, Ritter M, Schütze C, G tzinger E, Trasischker W, Vass C, Schmidt-Erfurth U, Hitzenberger C K. Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology. Biomedical Optics Express, 2012, 3(11): 2720– 2732

    [22] Cense B, Chen T C, Park B H, Pierce M C, de Boer J F. Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Investigative Ophthalmology & Visual Science, 2004, 45(8): 2606–2612

    [23] Makita S, Yamanari M, Yasuno Y. Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging. Optics Express, 2010, 18(2): 854–876

    [24] Wang X J, Milner T E, de Boer J F, Zhang Y, Pashley D H, Nelson J S. Characterization of dentin and enamel by use of optical coherence tomography. Applied Optics, 1999, 38(10): 2092–2096

    [25] Baumgartner A, Dichtl S, Hitzenberger C K, Sattmann H, Robl B, Moritz A, Fercher A F, Sperr W. Polarization-sensitive optical coherence tomography of dental structures. Caries Research, 2000, 34(1): 59–69

    [26] Fried D, Xie J, Shafi S, Featherstone J D, Breunig T M, Le C. Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 2002, 7(4): 618–627

    [27] Chen Y, Otis L, Piao D, Zhu Q. Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system. Applied Optics, 2005, 44(11): 2041–2048

    [28] Jones R S, Darling C L, Featherstone J D, Fried D. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography. Journal of biomedical optics, 2006, 11(1): 014016

    [29] Pierce M, Shishkov M, Park B, Nassif N, Bouma B, Tearney G, de Boer J. Effects of sample arm motion in endoscopic polarizationsensitive optical coherence tomography. Optics Express, 2005, 13 (15): 5739–5749

    [30] Fan C, Yao G. Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography. Biomedical Optics Express, 2013, 4(3): 460–465

    [31] Wang Y, Yao G. Optical tractography of the mouse heart using polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2013, 4(11): 2540–2545

    [32] Hariri L P, Villiger M, Applegate M B, Mino-Kenudson M, Mark E J, Bouma B E, Suter M J. Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy. American Journal of Respiratory and Critical Care Medicine, 2013, 187(2): 125–129

    [33] Pasquesi J J, Schlachter S C, Boppart MD, Chaney E, Kaufman S J, Boppart S A. In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography. Optics Express, 2006, 14(4): 1547–1556

    [34] Matcher S J, Winlove C P, Gangnus S V. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography. Physics in Medicine and Biology, 2004, 49(7): 1295–1306

    [35] Wang H, Black A J, Zhu J, Stigen T W, Al-Qaisi M K, Netoff T I, Abosch A, Akkin T. Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. NeuroImage, 2011, 58(4): 984–992

    [36] Wang H, Zhu J, Akkin T. Serial optical coherence scanner for largescale brain imaging at microscopic resolution. NeuroImage, 2014, 84: 1007–1017

    [37] Nakaji H, Kouyama N, Muragaki Y, Kawakami Y, Iseki H. Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography. Journal of Neuroscience Methods, 2008, 174(1): 82–90

    [38] Al-Qaisi M K, Akkin T. Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber. Optics Express, 2010, 18(4): 3392–3403

    [39] Hitzenberger C, Goetzinger E, Sticker M, Pircher M, Fercher A. Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Optics Express, 2001, 9(13): 780–790

    [40] Wang H, Al-Qaisi M K, Akkin T. Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain. Optics Letters, 2010, 35(2): 154–156

    [41] de Boer J F, Milner T E. Review of polarization sensitive optical coherence tomography and Stokes vector determination. Journal of Biomedical Optics, 2002, 7(3): 359–371

    [42] Bonesi M, Sattmann H, Torzicky T, Zotter S, Baumann B, Pircher M, G tzinger E, Eigenwillig C,Wieser W, Huber R, Hitzenberger C K. High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser. Biomedical Optics Express, 2012, 3(11): 2987–3000

    [43] Trasischker W, Zotter S, Torzicky T, Baumann B, Haindl R, Pircher M, Hitzenberger C K. Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer. Biomedical Optics Express, 2014, 5(8): 2798– 2809

    [44] Ding Z, Liang C, Tang Q, Chen Y. Quantitative measurement of tissue birefringence by single mode fiber based PS-OCT with a single input polarization state using Muller matrix. Submitted to Biomedical Optics Express

    [45] Park B H, Pierce M C, Cense B, de Boer J F. Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. Optics Letters, 2004, 29(21): 2512– 2514

    [46] Oh W Y, Yun S H, Vakoc B J, Shishkov M, Desjardins A E, Park B H, de Boer J F, Tearney G J, Bouma B E. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Optics Express, 2008, 16(2): 1096–1103

    [47] Fan C, Yao G. Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography. Optics Letters, 2012, 37(9): 1415–1417

    [48] Fan C, Yao G. Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2012, 17(11): 110501

    [49] Fan C, Yao G. Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera. Optics Express, 2012, 20(20): 22360–22371

    [50] Fan C, Yao G. Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation. Optics Express, 2010, 18(7): 7281–7287

    [51] Yamanari M, Makita S, Yasuno Y. Polarization-sensitive sweptsource optical coherence tomography with continuous source polarization modulation. Optics Express, 2008, 16(8): 5892–5906

    [52] Guo S, Zhang J, Wang L, Nelson J S, Chen Z. Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography. Optics Letters, 2004, 29(17): 2025–2027

    [53] Yun S, Tearney G, de Boer J, Bouma B. Removing the depthdegeneracy in optical frequency domain imaging with frequency shifting. Optics Express, 2004, 12(20): 4822–4828

    [54] Corsi F, Galtarossa A, Palmieri L. Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique. Journal of Lightwave Technology, 1998, 16(10): 1832– 1843

    [55] Park B, Pierce M, Cense B, de Boer J. Real-time multi-functional optical coherence tomography. Optics Express, 2003, 11(7): 782– 793

    Zhenyang DING, Chia-Pin LIANG, Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Frontiers of Optoelectronics, 2015, 8(2): 128
    Download Citation